Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Med Mushrooms ; 26(2): 43-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421695

RESUMO

Three genetically identified and morphologically characterized strains (MesAQ2-C, MesAQ6-2 and MesFI2-3) of the culinary-medicinal ascomycete mushroom Morchella esculenta (L.) Pers. collected in central-north Italy have been studied for their antifungal and antibacterial activities. The obtained data showed that mycelium of M. esculenta possess variable antimicrobial activity against four test fungi (Chrysosporium keratinophilum, Microsporum gypseum, Trichophyton terrestre, Penicillium griseofulvum), as well as one Gram positive (Staphylococcus aureus) and three Gram negative (Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa) test bacteria potentially pathogenic for humans and animals. Up to 20.4% of inhibition of the average mycelial growth rate (GRavr) of test fungi in dual culture experiment was detected. The samples of cultural liquid (CL) and mycelial extract (ME) obtained by static cultivation of M. esculenta strains showed up to 13.9 and 23.0% of GRavr inhibition of test fungi, respectively. Similarly, the inhibition of the bacterial colonies by CL and ME samples was 34.1 and 32.3%, respectively in comparison with the control with streptomycin indicating almost equal secretion of both intra- and extracellular antimicrobial compounds by M. esculenta mycelium. As a producer of antimicrobial compounds among tested M. esculenta strains, MesAQ2-C was the most effective. It may be considered for further myco-pharmacological research to develop mushroom-based antimicrobial biotech products with biomedical significance.


Assuntos
Agaricales , Ascomicetos , Animais , Humanos , Antifúngicos , Escherichia coli , Itália
2.
Environ Microbiol Rep ; 16(3): e13271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692852

RESUMO

Tuber magnatum is the most expensive truffle, but its large-scale cultivation is still a challenge compared to other valuable Tuber species. T. magnatum mycelium has never been grown profitably until now, which has led to difficulties to studying it in vitro. This study describes beneficial interactions between T. magnatum mycelium and never before described bradyrhizobia, which allows the in vitro growth of T. magnatum mycelium. Three T. magnatum strains were co-isolated on modified Woody Plant Medium (mWPM) with aerobic bacteria and characterised through microscopic observations. The difficulties of growing alone both partners, bacteria and T. magnatum mycelium, on mWPM demonstrated the reciprocal dependency. Three bacterial isolates for each T. magnatum strain were obtained and molecularly characterised by sequencing the 16S rRNA, glnII, recA and nifH genes. Phylogenetic analyses showed that all nine bacterial strains were distributed among five subclades included in a new monophyletic lineage belonging to the Bradyrhizobium genus within the Bradyrhizobium jicamae supergroup. The nifH genes were detected in all bacterial isolates, suggesting nitrogen-fixing capacities. This is the first report of consistent T. magnatum mycelium growth in vitro conditions. It has important implications for the development of new technologies in white truffle cultivation and for further studies on T. magnatum biology and genetics.


Assuntos
Bradyrhizobium , Micélio , Filogenia , RNA Ribossômico 16S , Bradyrhizobium/genética , Bradyrhizobium/classificação , Bradyrhizobium/isolamento & purificação , Bradyrhizobium/fisiologia , Bradyrhizobium/crescimento & desenvolvimento , Bradyrhizobium/metabolismo , Micélio/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Fixação de Nitrogênio , DNA Bacteriano/genética , Simbiose
3.
Plants (Basel) ; 13(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256777

RESUMO

Tuber melanosporum is an ascomycete that forms ectomycorrhizal (ECM) symbioses with a wide range of host plants, producing edible fruiting bodies with high economic value. The quality of seedlings in the early symbiotic stage is important for successful truffle cultivation. Numerous bacterial species have been reported to take part in the truffle biological cycle and influence the establishment of roots symbiosis in plant hosts and the development of the carpophore. In this work, three different bacteria formulations were co-inoculated in Quercus ilex L. seedlings two months after T. melanosporum inoculation. At four months of bacterial application, the T. melanosporum ECM root tip rate of colonization and bacterial presence were assessed using both morphological and molecular techniques. A 2.5-fold increase in ECM colonization rate was found in the presence of Pseudomonas sp. compared to the seedlings inoculated only with T. melanosporum. The same treatment caused reduced plant growth either for the aerial and root part. Meanwhile, the ECM colonization combined with Bradyrhizobium sp. and Pseudomonas sp. + Bradyrhizobium sp. reduced the relative density of fibrous roots (nutrient absorption). Our work suggests that the role of bacteria in the early symbiotic stages of ECM colonization involves both the mycorrhizal symbiosis rate and plant root development processes, both essential for improve the quality of truffle-inoculated seedlings produced in commercial nurseries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA