Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 20(2): 208-213, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32839587

RESUMO

Several concepts for platinum-based catalysts for the oxygen reduction reaction (ORR) are presented that exceed the US Department of Energy targets for Pt-related ORR mass activity. Most concepts achieve their high ORR activity by increasing the Pt specific activity at the expense of a lower electrochemically active surface area (ECSA). In the potential region controlled by kinetics, such a lower ECSA is counterbalanced by the high specific activity. At higher overpotentials, however, which are often applied in real systems, a low ECSA leads to limitations in the reaction rate not by kinetics, but by mass transport. Here we report on self-supported platinum-cobalt oxide networks that combine a high specific activity with a high ECSA. The high ECSA is achieved by a platinum-cobalt oxide bone nanostructure that exhibits unprecedentedly high mass activity for self-supported ORR catalysts. This concept promises a stable fuel-cell operation at high temperature, high current density and low humidification.

2.
Chemistry ; 26(41): 9012-9023, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32428349

RESUMO

Understanding the formation of nanoparticles (NPs) is key to develop materials by sustainable routes. The Co4CatTM process is a new synthesis of precious metal NPs in alkaline mono-alcohols well-suited to develop active nanocatalysts. The synthesis is 'facile', surfactant-free and performed under mild conditions like low temperature. The reducing properties of the solvent are here shown to strongly influence the formation of Pt NPs. Based on the in situ formation of CO adsorbed on the NP surface by solvent oxidation, a model is proposed that accounts for the different growth and stabilization mechanisms as well as re-dispersion properties of the surfactant-free NPs in different solvents. Using in situ and ex situ characterizations, it is established that in methanol, a slow nucleation with a limited NP growth is achieved. In ethanol, a fast nucleation followed by continuous and pronounced particle sintering occurs.

3.
Chemphyschem ; 20(22): 3147-3153, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31173447

RESUMO

We demonstrate a fit-for-purpose accelerated durability test (ADT) of a high-surface-area catalyst for the alkaline oxygen evolution reaction (OER). Using an automatized electrochemical setup enabled us to run a complex ADT protocol including online detection of the effective solution resistance as well as linear voltammetry, cyclic voltammetry, cyclic galvanograms, and electrochemical impedance spectroscopy (EIS) for 55 h in total. Using this protocol, we tested the service life stability of a nickel oxyhydroxide (NiOx) catalyst based on Raney Ni. The catalyst was prepared by growing nickel oxyhydroxide on high-surface-area Raney Ni and subsequent formation of the active phase. The successful synthesis of the active NiOx phase is supported by cyclic voltammetry and Raman spectroscopy. The as prepared and activated Raney NiOx exhibits an overpotential for the OER of 304 mV at 10 mA cm-2 with a Tafel slope of 53 mV dec-1 and roughness factors as high as 4515 determined by EIS during OER. By concentrating for the ADT protocol on current densities relevant for coupling water electrolysis to photovoltaics, it is demonstrated that Raney NiOx is a promising anode material candidate as it is earth abundant and its active phase exhibits high OER activity as well as stability.

4.
Chimia (Aarau) ; 73(9): 707-713, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31514770

RESUMO

Herein, we discuss recent research activities on the electrochemical water/CO2 co-electrolysis at the Department of Chemistry and Biochemistry of the University of Bern (Arenz and Broekmann research groups). For the electrochemical conversion of the greenhouse gas CO2 into products of higher value catalysts for two half-cell reactions need to be developed, i.e. catalysts for the reductive conversion of CO2 (CO2RR) as well as catalysts for the oxidative splitting of water (OER: Oxygen Evolution Reaction). In research, the catalysts are often investigated independently of each other as they can later easily be combined in a technical electrolysis cell. CO2RR catalysts consist of abundant materials such as copper and silver and thus mainly the product selectivity of the respective catalyst is in focus of the investigation. In contrast to that, OER catalysts (in acidic conditions) mainly consist of precious metals, e.g. Ir, and therefore the minimization of the catalytic current per gram Ir is of fundamental importance.

5.
Chimia (Aarau) ; 73(11): 922-927, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753073

RESUMO

In this work, we discuss the application of a gas diffusion electrode (GDE) setup for benchmarking electrocatalysts for the reductive conversion of CO2 (CO2 RR: CO2 reduction reaction). Applying a silver nanowire (Ag-NW) based catalyst, it is demonstrated that in the GDE setup conditions can be reached, which are relevant for the industrial conversion of CO2 to CO. This reaction is part of the so-called 'Rheticus' process that uses the CO for the subsequent production of butanol and hexanol based on a fermentation approach. In contrast to conventional half-cell measurements using a liquid electrolyte, in the GDE setup CO2 RR current densities comparable to technical cells (>100 mA cm-2) are reached without suffering from mass transport limitations of the CO2 reactant gas. The results are of particular importance for designing CO2 RR catalysts exhibiting high faradaic efficiencies towards CO at technological reaction rates.

6.
Angew Chem Int Ed Engl ; 57(38): 12338-12341, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30051948

RESUMO

Compared to conventional preparation methods for supported heterogeneous catalysts, the use of colloidal nanoparticles (NPs) allows for a precise control over size, size distribution, and distribution/location of the NPs on the support. However, common colloidal syntheses have restrictions that limit their applicability for industrial catalyst preparation. We present a simple, surfactant-free, and scalable preparation method for colloidal NPs to overcome these restrictions. We demonstrate how precious-metal NPs are prepared in alkaline methanol, how the particle size can be tuned, and how supported catalysts are obtained. The potential of these colloids in the preparation of improved catalysts is demonstrated by two examples from heterogeneous catalysis and electrocatalysis.

7.
ACS Appl Mater Interfaces ; 12(23): 25718-25727, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32395990

RESUMO

The high costs of polymer membrane electrolyte fuel cells (PEMFCs) remain a roadblock for a competitive market with combustion engine vehicles. The PEMFC costs can be reduced by decreasing the size of Pt nanoparticles in the catalyst layer, thereby increasing the Pt dispersion and utilization. Furthermore, high-power performance loss due to O2 transport resistance is alleviated by decreasing the particle size and increasing dispersion. However, firm conclusions on how Pt particle size impacts durability remain elusive due to synthetic difficulties in exclusively varying single parameters (e.g., particle size and loading). Therefore, here the particle size of Pt nanoparticles was varied from 2.0 to 2.8 and 3.7 nm while keeping the loading constant (30 wt %) on a Vulcan support using the two-step surfactant-free toolbox method. By studying the electrochemical dissolution in situ using online inductively coupled plasma mass spectrometry (online ICP-MS), mass-specific dissolution trends are revealed and are attributed to particle-size-dependent changes in electrochemically active surface area. Such degradation trends are critical for the start/stop of PEMFCs and currently require the implementation of potential control systems in consumer vehicles. Additionally, shifts in the onset of anodic dissolution and also oxidation to more negative potentials with decreasing particle size were observed. These results indicate a similar mechanism of anodic dissolution related to place-exchange when moving from extended polycrystalline Pt to nanoparticle scales. The negative shifts in the onset as the particle size decreases highlight a practical limitation for PEMFCs during load/idle conditions: without further material improvements, which inhibit Pt dissolution, reduction in costs and improvement in high-power performance via increased Pt utilization and dispersion will not be possible by decreasing particle sizes further.

8.
ACS Appl Mater Interfaces ; 9(44): 38176-38180, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29063766

RESUMO

The oxygen reduction reaction (ORR) is one of the key processes in electrocatalysis. In this communication, the ORR is studied using a rotating disk electrode (RDE). In conventional work, this method limits the potential region where kinetic (mass transport free) reaction rates can be determined to a narrow range. Here, we applied a new approach, which allows us to analyze the ORR rates in the diffusion-limited potential region of high mass transport. Thus, for the first time, the effect of anion adsorption on the ORR can be studied at such potentials.

9.
Chem Commun (Camb) ; 51(90): 16221-4, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26399500

RESUMO

The effect of particle size on the asymmetric catalytic properties of supported ligand-functionalized nanoparticles (NPs) was investigated for the first time and found to alter significantly the activity but surprisingly not the stereoselectivity. These results suggest that the stereoselectivity of these complex systems is primarily determined by the ligand-reactant interaction, whereas the activity is determined by the particle size.


Assuntos
Acetoacetatos/química , Hidroxibutiratos/síntese química , Nanopartículas Metálicas/química , Platina/química , Prolina/química , Catálise , Hidrogênio/química , Hidroxibutiratos/química , Ligantes , Estrutura Molecular , Tamanho da Partícula , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA