Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(27): e2406884121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38935562

RESUMO

Degeneracy and symmetry have a profound relation in quantum systems. Here, we report gate-tunable subband degeneracy in PbTe nanowires with a nearly symmetric cross-sectional shape. The degeneracy is revealed in electron transport by the absence of a quantized plateau. Utilizing a dual gate design, we can apply an electric field to lift the degeneracy, reflected as emergence of the plateau. This degeneracy and its tunable lifting were challenging to observe in previous nanowire experiments, possibly due to disorder. Numerical simulations can qualitatively capture our observation, shedding light on device parameters for future applications.

2.
Nano Lett ; 24(15): 4658-4664, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563608

RESUMO

Planar Josephson junctions are predicted to host Majorana zero modes. The material platforms in previous studies are two-dimensional electron gases (InAs, InSb, InAsSb, and HgTe) coupled to a superconductor such as Al or Nb. Here, we introduce a new material platform for planar JJs, the PbTe-Pb hybrid. The semiconductor, PbTe, was grown as a thin film via selective area epitaxy. The Josephson junction was defined by a shadow wall during the deposition of superconductor Pb. Scanning transmission electron microscopy reveals a sharp semiconductor-superconductor interface. Gate-tunable supercurrents and multiple Andreev reflections are observed. A perpendicular magnetic field causes interference patterns of the switching current, exhibiting Fraunhofer-like and SQUID-like behaviors. We further demonstrate a prototype device for Majorana detection wherein phase bias and tunneling spectroscopy are applicable.

3.
Nano Lett ; 23(23): 11137-11144, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37948302

RESUMO

Disorder is the primary obstacle in the current Majorana nanowire experiments. Reducing disorder or achieving ballistic transport is thus of paramount importance. In clean and ballistic nanowire devices, quantized conductance is expected, with plateau quality serving as a benchmark for disorder assessment. Here, we introduce ballistic PbTe nanowire devices grown by using the selective-area-growth (SAG) technique. Quantized conductance plateaus in units of 2e2/h are observed at zero magnetic field. This observation represents an advancement in diminishing disorder within SAG nanowires as most of the previously studied SAG nanowires (InSb or InAs) have not exhibited zero-field ballistic transport. Notably, the plateau values indicate that the ubiquitous valley degeneracy in PbTe is lifted in nanowire devices. This degeneracy lifting addresses an additional concern in the pursuit of Majorana realization. Moreover, these ballistic PbTe nanowires may enable the search for clean signatures of the spin-orbit helical gap in future devices.

4.
Nano Lett ; 21(7): 2758-2765, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33792332

RESUMO

Artificially engineered topological superconductivity has emerged as a viable route to create Majorana modes. In this context, proximity-induced superconductivity in materials with a sizable spin-orbit coupling has been intensively investigated in recent years. Although there is convincing evidence that superconductivity may indeed be induced, it has been difficult to elucidate its topological nature. Here, we engineer an artificial topological superconductor by progressively introducing superconductivity (Nb), strong spin-orbital coupling (Pt), and topological states (Bi2Te3). Through spectroscopic imaging of superconducting vortices within the bare s-wave superconducting Nb and within proximitized Pt and Bi2Te3 layers, we detect the emergence of a zero-bias peak that is directly linked to the presence of topological surface states. Our results are rationalized in terms of competing energy trends which are found to impose an upper limit to the size of the minigap separating Majorana and trivial modes, its size being ultimately linked to fundamental materials properties.

5.
Nano Lett ; 19(7): 4627-4633, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31188617

RESUMO

Identification and control of topological phases in topological thin films offer great opportunities for fundamental research and the fabrication of topology-based devices. Here, combining molecular beam epitaxy, angle-resolved photoemission spectroscopy, and ab initio calculations, we investigate the electronic structure evolution in (Bi1-xInx)2Se3 films (0 ≤ x ≤ 1) with thickness from 2 to 13 quintuple layers. By employing both thickness and In substitution as two independent "knobs" to control the gap change, we identify the evolution between several topological phases, i.e., dimensional crossover from a three-dimensional topological insulator to its two-dimensional counterpart with gapped surface state, and topological phase transition from a topological insulator to a normal semiconductor with increasing In concentration. Furthermore, by introducing In substitution, we experimentally demonstrated the trivial topological nature of Bi2Se3 thin films (below 6 quintuple layers) as two-dimensional gapped systems, consistent with our theoretical calculations. Our results provide not only a comprehensive phase diagram of (Bi1-xInx)2Se3 and a route to control its phase evolution but also a practical way to experimentally determine the topological properties of a gapped compound by a topological phase transition and band gap engineering.

6.
Opt Express ; 25(13): 14635-14643, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28789047

RESUMO

As a new quantum state of matter, topological insulators offer a new platform for exploring new physics, giving rise to fascinating new phenomena and new devices. Lots of novel physical properties of topological insulators have been studied extensively and are attributed to the unique electron-phonon interactions at the surface. Although electron behavior in topological insulators has been studied in detail, electron-phonon interactions at the surface of topological insulators are less understood. In this work, using optical pump-optical probe technology, we performed transient absorbance measurement on Bi2Te3 thin films to study the dynamics of its hot carrier relaxation process and coherent phonon behavior. The excitation and dynamics of phonon modes are observed with a response dependent on the thickness of the samples. The thickness-dependent characteristic time, amplitude and frequency of the damped oscillating signals are acquired by fitting the signal profiles. The results clearly indicate that the electron-hole recombination process gradually become dominant with the increasing thickness which is consistent with our theoretical calculation. In addition, a frequency modulation phenomenon on the high-frequency oscillation signals induced by coherent optical phonons is observed.

7.
Phys Rev Lett ; 119(17): 176809, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219450

RESUMO

We report transport studies of Mn-doped Bi_{2}Te_{3} topological insulator (TI) films with an accurately controlled thickness grown by molecular beam epitaxy. We find that films thicker than five quintuple layers (QLs) exhibit the usual anomalous Hall effect for magnetic TIs. When the thickness is reduced to four QLs, however, characteristic features associated with the topological Hall effect (THE) emerge. More surprisingly, the THE vanishes again when the film thickness is further reduced to three QLs. Theoretical calculations demonstrate that the coupling between the top and bottom surface states at the dimensional crossover regime stabilizes the magnetic Skyrmion structure that is responsible for the THE.

8.
Phys Rev Lett ; 112(18): 186801, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856712

RESUMO

The surface of a topological crystalline insulator (TCI) carries an even number of Dirac cones protected by crystalline symmetry. We epitaxially grew high-quality Pb(1-x)Sn(x)Te(111) films and investigated the TCI phase by in situ angle-resolved photoemission spectroscopy. Pb(1-x)Sn(x)Te(111) films undergo a topological phase transition from a trivial insulator to TCI via increasing the Sn/Pb ratio, accompanied by a crossover from n-type to p-type doping. In addition, a hybridization gap is opened in the surface states when the thickness of the film is reduced to the two-dimensional limit. The work demonstrates an approach to manipulating the topological properties of TCI, which is of importance for future fundamental research and applications based on TCI.

9.
Nat Commun ; 15(1): 3369, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643171

RESUMO

One-unit-cell FeSe films on SrTiO3 substrates are of great interest owing to significantly enlarged pairing gaps characterized by two coherence peaks at ±10 meV and ±20 meV. In-situ transport measurement is desired to reveal novel properties. Here, we performed in-situ microscale electrical transport and combined scanning tunneling microscopy measurements on continuous one-unit-cell FeSe films with twin boundaries. We observed two spatially coexisting superconducting phases in domains and on boundaries, characterized by distinct superconducting gaps ( Δ 1 ~15 meV vs. Δ 2 ~10 meV) and pairing temperatures (Tp1~52.0 K vs. Tp2~37.3 K), and correspondingly two-step nonlinear V ~ I α behavior but a concurrent Berezinskii-Kosterlitz-Thouless (BKT)-like transition occurring at T BKT ~28.7 K. Moreover, the onset transition temperature T c onset ~54 K and zero-resistivity temperature T c zero ~31 K are consistent with Tp1 and T BKT , respectively. Our results indicate the broadened superconducting transition in FeSe/SrTiO3 is related to intrinsic electronic inhomogeneity due to distinct two-gap features and phase fluctuations of two-dimensional superconductivity.

10.
Science ; 367(6485): 1454-1457, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32165427

RESUMO

Spin-orbit coupling has proven indispensable in the realization of topological materials and, more recently, Ising pairing in two-dimensional superconductors. This pairing mechanism relies on inversion symmetry-breaking and sustains anomalously large in-plane polarizing magnetic fields whose upper limit is predicted to diverge at low temperatures. Here, we show that the recently discovered superconductor few-layer stanene, epitaxially strained gray tin (α-Sn), exhibits a distinct type of Ising pairing between carriers residing in bands with different orbital indices near the Γ-point. The bands are split as a result of spin-orbit locking without the participation of inversion symmetry-breaking. The in-plane upper critical field is strongly enhanced at ultralow temperature and reveals the predicted upturn.

11.
Nanoscale ; 9(33): 12196, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28809424

RESUMO

Correction for 'Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures' by Honghui Sun, et al., Nanoscale, 2017, 9, 9325-9332.

12.
Nanoscale ; 9(27): 9325-9332, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28498377

RESUMO

Topological insulators (TIs) are new states of quantum matter in which the spin-momentum-locked surface states reside in the bulk insulating gap and have triggered extensive investigations on fundamental properties and potential applications. Herein, we report scalable, broadband photovoltaic detectors based on the topological insulator Sb2Te3/strontium titanate (STO) heterostructure. Large-scale (2 mm × 5 mm), high crystalline quality p-type Sb2Te3 films were fabricated on an n-type STO substrate by the molecular beam epitaxy (MBE) method. The Sb2Te3/STO heterostructures exhibited pronounced photovoltaic behavior in a wide range of temperatures as a result of a strong built-in field at the hetero-interface. Superior performances of broadband (from visible to infrared, 405 nm-1550 nm) and ultrafast (rise time ∼30 µs, fall time ∼95 µs) photoresponses were achieved under ambient conditions. The prominent repeatability and stability indicated that our photodetectors can operate effectively in harsh circumstances. These results show that stacking the topological insulator thin films on a strongly correlated oxide substrate using the MBE approach holds great promise for high performance optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA