Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(12): 2126-2139, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810226

RESUMO

A learned sensory-motor behavior engages multiple brain regions, including the neocortex and the basal ganglia. How a target stimulus is detected by these regions and converted to a motor response remains poorly understood. Here, we performed electrophysiological recordings and pharmacological inactivations of whisker motor cortex and dorsolateral striatum to determine the representations within, and functions of, each region during performance in a selective whisker detection task in male and female mice. From the recording experiments, we observed robust, lateralized sensory responses in both structures. We also observed bilateral choice probability and preresponse activity in both structures, with these features emerging earlier in whisker motor cortex than dorsolateral striatum. These findings establish both whisker motor cortex and dorsolateral striatum as potential contributors to the sensory-to-motor (sensorimotor) transformation. We performed pharmacological inactivation studies to determine the necessity of these brain regions for this task. We found that suppressing the dorsolateral striatum severely disrupts responding to task-relevant stimuli, without disrupting the ability to respond, whereas suppressing whisker motor cortex resulted in more subtle changes in sensory detection and response criterion. Together these data support the dorsolateral striatum as an essential node in the sensorimotor transformation of this whisker detection task.SIGNIFICANCE STATEMENT Selecting an item in a grocery store, hailing a cab - these daily practices require us to transform sensory stimuli into motor responses. Many decades of previous research have studied goal-directed sensory-to-motor transformations within various brain structures, including the neocortex and the basal ganglia. Yet, our understanding of how these regions coordinate to perform sensory-to-motor transformations is limited because these brain structures are often studied by different researchers and through different behavioral tasks. Here, we record and perturb specific regions of the neocortex and the basal ganglia and compare their contributions during performance of a goal-directed somatosensory detection task. We find notable differences in the activities and functions of these regions, which suggests specific contributions to the sensory-to-motor transformation process.


Assuntos
Neocórtex , Vibrissas , Camundongos , Masculino , Feminino , Animais , Vibrissas/fisiologia , Aprendizagem , Corpo Estriado/fisiologia , Neostriado , Córtex Somatossensorial/fisiologia
2.
Cereb Cortex ; 32(9): 2037-2053, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34564725

RESUMO

Spontaneous neuronal activity strongly impacts stimulus encoding and behavioral responses. We sought to determine the effects of neocortical prestimulus activity on stimulus detection. We trained mice in a selective whisker detection task, in which they learned to respond (lick) to target stimuli in one whisker field and ignore distractor stimuli in the contralateral whisker field. During expert task performance, we used widefield Ca2+ imaging to assess prestimulus and post-stimulus neuronal activity broadly across frontal and parietal cortices. We found that lower prestimulus activity correlated with enhanced stimulus detection: lower prestimulus activity predicted response versus no response outcomes and faster reaction times. The activity predictive of trial outcome was distributed through dorsal neocortex, rather than being restricted to whisker or licking regions. Using principal component analysis, we demonstrate that response trials are associated with a distinct and less variable prestimulus neuronal subspace. For single units, prestimulus choice probability was weak yet distributed broadly, with lower than chance choice probability correlating with stronger sensory and motor encoding. These findings support low amplitude and low variability as an optimal prestimulus cortical state for stimulus detection that presents globally and predicts response outcomes for both target and distractor stimuli.


Assuntos
Lobo Parietal , Vibrissas , Animais , Aprendizagem , Camundongos , Tempo de Reação/fisiologia
3.
J Neurosci ; 40(28): 5443-5454, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32487695

RESUMO

An essential feature of goal-directed behavior is the ability to selectively respond to the diverse stimuli in one's environment. However, the neural mechanisms that enable us to respond to target stimuli while ignoring distractor stimuli are poorly understood. To study this sensory selection process, we trained male and female mice in a selective detection task in which mice learn to respond to rapid stimuli in the target whisker field and ignore identical stimuli in the opposite, distractor whisker field. In expert mice, we used widefield Ca2+ imaging to analyze target-related and distractor-related neural responses throughout dorsal cortex. For target stimuli, we observed strong signal activation in primary somatosensory cortex (S1) and frontal cortices, including both the whisker region of primary motor cortex (wMC) and anterior lateral motor cortex (ALM). For distractor stimuli, we observed strong signal activation in S1, with minimal propagation to frontal cortex. Our data support only modest subcortical filtering, with robust, step-like attenuation in distractor processing between mono-synaptically coupled regions of S1 and wMC. This study establishes a highly robust model system for studying the neural mechanisms of sensory selection and places important constraints on its implementation.SIGNIFICANCE STATEMENT Responding to task-relevant stimuli while ignoring task-irrelevant stimuli is critical for goal-directed behavior. However, the neural mechanisms involved in this selection process are poorly understood. We trained mice in a detection task with both target and distractor stimuli. During expert performance, we measured neural activity throughout cortex using widefield imaging. We observed responses to target stimuli in multiple sensory and motor cortical regions. In contrast, responses to distractor stimuli were abruptly suppressed beyond sensory cortex. Our findings localize the sites of attenuation when successfully ignoring a distractor stimulus and provide essential foundations for further revealing the neural mechanism of sensory selection and distractor suppression.


Assuntos
Atenção/fisiologia , Córtex Motor/fisiologia , Percepção do Tato/fisiologia , Animais , Feminino , Masculino , Camundongos , Estimulação Física , Tempo de Reação/fisiologia , Córtex Somatossensorial/fisiologia , Vibrissas
4.
bioRxiv ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824924

RESUMO

Goal-directed behavior paradigms inevitably involve temporal processes, such as anticipation, expectation, timing, waiting, and withholding. And yet, amongst the vast use of object-based task paradigms, characterizations of temporal features are often neglected. Here, we longitudinally analyzed mice from naïve to expert performance in a somatosensory selective detection task. In addition to tracking standard measures from signal detection theory, we also characterized learning of temporal features. We find that mice transition from general sampling strategies to stimulus detection and stimulus discrimination. During these transitions, mice learn to wait as they anticipate an expected stimulus presentation and to time their response after a stimulus presentation. By establishing and implementing standardized measures, we show that the development of waiting and timing in the task overlaps with learning of stimulus detection and discrimination. We also investigated sex differences in temporal and object-based trajectories of learning, finding that males learn strategies idiosyncratically and that females learn strategies more sequentially and stereotypically. Overall, our findings emphasize multiple temporal strategies in learning for an object-based task and highlight the importance of considering diverse temporal and object-based features when characterizing behavioral and neuronal aspects of learning.

5.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33495240

RESUMO

Responding to a stimulus requires transforming an internal sensory representation into an internal motor representation. Where and how this sensory-motor transformation occurs is a matter of vigorous debate. Here, we trained male and female mice in a whisker detection go/no-go task in which they learned to respond (lick) following a transient whisker deflection. Using single unit recordings, we quantified sensory-related, motor-related, and choice-related activities in whisker primary somatosensory cortex (S1), whisker region of primary motor cortex (wMC), and anterior lateral motor cortex (ALM), three regions that have been proposed to be critical for the sensory-motor transformation in whisker detection. We observed strong sensory encoding in S1 and wMC, with enhanced encoding in wMC, and a lack of sensory encoding in ALM. We observed strong motor encoding in all three regions, yet largest in wMC and ALM. We observed the earliest choice probability in wMC, despite earliest sensory responses in S1. Based on the criteria of having both strong sensory and motor representations and early choice probability, we identify whisker motor cortex as the cortical region most directly related to the sensory-motor transformation. Our data support a model of sensory encoding originating in S1, sensory amplification and sensory-motor transformation occurring within wMC, and motor signals emerging in ALM after the sensory-motor transformation.


Assuntos
Córtex Motor , Vibrissas , Animais , Comportamento Animal , Feminino , Aprendizagem , Masculino , Camundongos , Córtex Somatossensorial
6.
Sci Rep ; 10(1): 4837, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179777

RESUMO

Attention selectively routes the most behaviorally relevant information from the stream of sensory inputs through the hierarchy of cortical areas. Previous studies have shown that visual attention depends on the phase of oscillatory brain activities. These studies mainly focused on the stimulus presentation period, rather than the pre-stimulus period. Here, we hypothesize that selective attention controls the phase of oscillatory neural activities to efficiently process relevant information. We document an attentional modulation of pre-stimulus inter-trial phase coherence (a measure of deviation between instantaneous phases of trials) of low frequency local field potentials (LFP) in visual area MT of macaque monkeys. Our data reveal that phase coherence increases following a spatial cue deploying attention towards the receptive field of the recorded neural population. We further show that the attentional enhancement of phase coherence is positively correlated with the modulation of the stimulus-induced firing rate, and importantly, a higher phase coherence is associated with a faster behavioral response. These results suggest a functional utilization of intrinsic neural oscillatory activities for an enhanced processing of upcoming stimuli.


Assuntos
Atenção/fisiologia , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Potenciais Evocados Visuais , Macaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA