Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(16): 2372-2382, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39116001

RESUMO

ConspectusThe multifunctionality and resilience of living systems has inspired an explosion of interest in creating materials with life-like properties. Just as life persists out-of-equilibrium, we too should try to design materials that are thermodynamically unstable but can be harnessed to achieve desirable, adaptive behaviors. Studying minimalistic chemical systems that exhibit relatively simple emergent behaviors, such as motility, communication, or self-organization, can provide insight into fundamental principles which may enable the design of more complex and life-like synthetic materials in the future.Emulsions, which are composed of liquid droplets dispersed in another immiscible fluid phase, have emerged as fascinating chemically minimal materials in which to study nonequilibrium, life-like properties. As covered in this Account, our group has focused on studying oil-in-water emulsions, specifically those which destabilize by solubilization, a process wherein oil is released into the continuous phase over time to create gradients of oil-filled micelles. These chemical gradients can create interfacial tension gradients that lead to droplet self-propulsion as well as mediate communication between neighboring oil droplets. As such, oil-in-water emulsions present an interesting platform for studying active matter. However, despite being chemically minimal with sometimes as few as three chemicals (oil, water, and a surfactant), emulsions present surprising complexity across the molecular to macroscale. Fundamental processes governing their active behavior, such as micelle-mediated interfacial transport, are still not well understood. This complexity is compounded by the challenges of studying systems out-of-equilibrium which typically require new analytical methods and may break our intuition derived from equilibrium thermodynamics.In this Account, we highlight our group's efforts toward developing chemical frameworks for understanding active and interactive oil-in-water emulsions. How do the chemical properties and physical spatial organization of the oil, water, and surfactant combine to yield colloidal-scale active properties? Our group tackles this question by employing systematic studies of active behavior working across the chemical space of oils and surfactants to link molecular structure to active behavior. The Account begins with an introduction to the self-propulsion of single, isolated droplets and how by applying biases, such as with a gravitational field or interfacially adsorbed particles, drop speeds can be manipulated. Next, we illustrate that some droplets can be attractive, as well as self-propulsive/repulsive, which does not fall in line with the current understanding of the impact of oil-filled micelle gradients on interfacial tensions. The mechanisms by which oil-filled micelles influence interfacial tensions of nonequilibrium interfaces is poorly understood and requires deeper molecular understanding. Regardless, we extend our knowledge of droplet motility to design emulsions with nonreciprocal predator-prey interactions and describe the dynamic self-organization that arises from the combination of reciprocal and nonreciprocal interactions between droplets. Finally, we highlight our group's progress toward answering key chemical questions surrounding nonequilibrium processes in emulsions that remain to be answered. We hope that our progress in understanding the chemical principles governing the dynamic nonequilibrium properties of oil-in-water droplets can help inform research in tangential research areas such as cell biology and origins of life.

2.
Nature ; 566(7745): 523-527, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30814712

RESUMO

Many physical phenomena create colour: spectrally selective light absorption by pigments and dyes1,2, material-specific optical dispersion3 and light interference4-11 in micrometre-scale and nanometre-scale periodic structures12-17. In addition, scattering, diffraction and interference mechanisms are inherent to spherical droplets18, which contribute to atmospheric phenomena such as glories, coronas and rainbows19. Here we describe a previously unrecognized mechanism for creating iridescent structural colour with large angular spectral separation. Light travelling along different trajectories of total internal reflection at a concave optical interface can interfere to generate brilliant patterns of colour. The effect is generated at interfaces with dimensions that are orders of magnitude larger than the wavelength of visible light and is readily observed in systems as simple as water drops condensed on a transparent substrate. We also exploit this phenomenon in complex systems, including multiphase droplets, three-dimensional patterned polymer surfaces and solid microparticles, to create patterns of iridescent colour that are consistent with theoretical predictions. Such controllable structural colouration is straightforward to generate at microscale interfaces, so we expect that the design principles and predictive theory outlined here will be of interest both for fundamental exploration in optics and for application in functional colloidal inks and paints, displays and sensors.

3.
Angew Chem Int Ed Engl ; 63(6): e202316242, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37939352

RESUMO

The interplay of interfacial tensions on droplets results in a range of self-powered motions that mimic those of living systems and serve as a tunable model to understand their complex non-equilibrium behavior. Spontaneous shape deformations and oscillations are crucial features observed in nature but difficult to incorporate in synthetic artificial systems. Here, we report sessile oil-in-water emulsions that exhibit rapid oscillating behavior. The oscillations depend on the nature and concentration of the surfactant, the chemical composition of the oil, and the wettability of the solid substrate. The rapid changes in the contact angle per oscillation are observed using side-view optical microscopy. We propose that the changes in the interfacial tension of the oil droplets is due to the partitioning of the surfactant into the oil phase and the movement of self-emulsified oil out of the parent droplets giving rise to the rhythmic variation in droplet contact-line. The ability to control and understand droplet oscillation can help model similar oscillations in out-of-equilibrium systems in nature and reproduce biomimetic behavior in artificial systems for various applications, such as microfluidic lab-on-a-chip and adaptive materials.

4.
Langmuir ; 39(31): 10795-10805, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478134

RESUMO

Ionic liquids have drawn notable attention for their unique solvent properties and use in applications such as batteries and chemical separations. While many ionic liquids are water-soluble, there are numerous examples of ionic liquids that are sufficiently hydrophobic to remain phase separated from water. However, relatively little is known about the stability and properties of ionic liquid-in-water emulsions. Here, we survey a series of ionic liquid-in-water emulsions stabilized by a range of ionic and nonionic molecular surfactants and polymers. To assess droplet stability and dynamics, we characterize the ionic liquid-surfactant interfacial tension, describe qualitative coarsening rates, and quantify droplet solubilization rate. In some instances, we observe unexpected spontaneous formation of complex double and triple emulsions. Our observations highlight approaches for ionic liquid emulsion formulation and provide insight into how to address challenges surrounding stabilization of ionic liquid-in-water droplets with molecular surfactants.

5.
Chem Eng J ; 4562023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36712894

RESUMO

Gas-sensitive semiconducting nanomaterials (e.g., metal oxides, graphene oxides, and transition metal dichalcogenides) and their heterojunctions hold great promise in chemiresistive gas sensors. However, they often require a separate synthesis method (e.g., hydrothermal, so-gel, and co-precipitation) and their integration on interdigitated electrodes (IDE) via casting is also associated with weak interfacial properties. This work demonstrates in situ laser-assisted synthesis and patterning of various sensing nanomaterials and their heterojunctions on laser-induced graphene (LIG) foam to form LIG composites as a flexible and stretchable gas sensing platform. The porous LIG line or pattern with nanomaterial precursors dispensed on top is scribed by laser to allow for in situ growth of corresponding nanomaterials. The versatility of the proposed method is highlighted through the creation of different types of gas-sensitive materials, including transition metal dichalcogenide (e.g., MoS2), metal oxide (e.g., CuO), noble metal-doped metal oxide (e.g., Ag/ZnO) and composite metal oxides (e.g., In2O3/Cr2O3). By eliminating the IDE and separate heaters, the LIG gas sensing platform with self-heating also decreases the device complexity. The limit of detection (LOD) of the LIG gas sensor with in situ synthesized MoS2, CuO, and Ag/ZnO to NO2, H2S, and trimethylamine (TMA) is 2.7, 9.8, and 5.6 ppb, respectively. Taken together with the high sensitivity, good selectivity, rapid response/recovery, and tunable operating temperature, the integrated LIG gas sensor array can identify multiple gas species in the environment or exhaled breath.

6.
Angew Chem Int Ed Engl ; 61(32): e202204510, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35678216

RESUMO

Micellar solubilization is a transport process occurring in surfactant-stabilized emulsions that can lead to Marangoni flow and droplet motility. Active droplets exhibit self-propulsion and pairwise repulsion due to solubilization processes and/or solubilization products raising the droplet's interfacial tension. Here, we report emulsions with the opposite behavior, wherein solubilization decreases the interfacial tension and causes droplets to attract. We characterize the influence of oil chemical structure, nonionic surfactant structure, and surfactant concentration on the interfacial tensions and Marangoni flows of solubilizing oil-in-water drops. Three regimes corresponding to droplet "attraction", "repulsion" or "inactivity" are identified. We believe these studies contribute to a fundamental understanding of solubilization processes in emulsions and provide guidance as to how chemical parameters can influence the dynamics and chemotactic interactions between active droplets.


Assuntos
Tensoativos , Água , Emulsões/química , Micelas , Tensoativos/química , Água/química
7.
Soft Matter ; 17(28): 6742-6750, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34223843

RESUMO

Understanding the chemo-mechanical mechanisms that direct the motion of self-propulsive colloids is important for the development of active materials and exploration of dynamic, collective phenomena. Here, we demonstrate that the adsorption of solid particles on the surface of solubilizing oil droplets can significantly enhance the droplets' self-propulsion speeds. We investigate the relationship between the self-propulsion of bromodecane oil droplets containing silica particles of varying concentration in Triton X-100 surfactant, noting up to order of magnitude increases in propulsion speeds. Using fluorescently labeled silica, we observe packing of the particles at the oil-water interfaces of the rear pole of the moving droplets. For bromodecane oil droplets in Triton X-100, the highest droplet speeds were achieved at approximately 40% particle surface coverage of the droplet interface. We find particle-assisted propulsion enhancement in ionic surfactants and different oil droplet compositions as well, demonstrating the breadth of this effect. While a precise mechanism for the propulsion enhancement remains unclear, the simple addition of silica particles to droplet oil-water interfaces provides a straightforward route to tune active droplet dynamics.

8.
Nature ; 518(7540): 520-4, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25719669

RESUMO

Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.


Assuntos
Emulsões/química , Flúor/química , Hidrocarbonetos/química , Concentração de Íons de Hidrogênio , Luz , Magnetismo , Microfluídica , Silicones/química , Tensão Superficial , Tensoativos/química , Temperatura , Água/química
9.
Langmuir ; 36(25): 7083-7090, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31991080

RESUMO

Stabilization of oil-oil interfaces is important for nonaqueous emulsions as well as for multiphase oil-in-water emulsions, with relevance to a variety of fields ranging from emulsion polymerization to sensors and optics. Here, we focus on examining the ability of functionalized silica particles to stabilize interfaces between fluorinated oils and other immiscible oils (such as hydrocarbons and silicones) in nonaqueous emulsions and also on the particles' ability to affect the morphology and reconfigurability of complex, biphasic oil-in-water emulsions. We compare the effectiveness of fluorophilic, lipophilic, and bifunctional fluorophilic-lipophilic coated nanoparticles to stabilize these oil-oil interfaces. Sequential bulk emulsification steps by vortex mixing, or emulsification by microfluidics, can be used to create complex droplets in which particles stabilize the oil-oil interfaces and surfactants stabilize the oil-water interfaces. We examine the influence of particles adsorbed at the internal oil-oil interface in complex droplets to hinder the reconfiguration of these complex emulsions upon addition of aqueous surfactants, creating "metastable" droplets that resist changes in morphology. Such metastable droplets can be triggered to reconfigure when heated above their upper critical solution temperature. Thus, not only do these bifunctional silica particles enable the stabilization of a broad array of oil-fluorocarbon nonaqueous emulsions, but the ability to address the oil-oil interface within complex O/O/W droplets expands the diversity of oil chemical choices available and the accessibility of droplet morphologies and sensitivity.

10.
Proc Natl Acad Sci U S A ; 114(15): 3821-3825, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348236

RESUMO

In this paper, we describe an approach to measuring enzyme activity based on the reconfiguration of complex emulsions. Changes in the morphology of these complex emulsions, driven by enzyme-responsive surfactants, modulate the transmission of light through a sample. Through this method we demonstrate how simple photodetector measurements may be used to monitor enzyme kinetics. This approach is validated by quantitative measurements of enzyme activity for three different classes of enzymes (amylase, lipase, and sulfatase), relying on two distinct mechanisms for coupling droplet morphology to enzyme activity (host-guest interactions with uncaging and molecular cleavage).


Assuntos
Amilases/metabolismo , Lipase/metabolismo , Microfluídica/instrumentação , Óptica e Fotônica , Sulfatases/metabolismo , Aspergillus/enzimologia , Candida/enzimologia , Emulsões , Cinética , Tensoativos
11.
Nature ; 487(7406): 214-8, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22785318

RESUMO

Living organisms have unique homeostatic abilities, maintaining tight control of their local environment through interconversions of chemical and mechanical energy and self-regulating feedback loops organized hierarchically across many length scales. In contrast, most synthetic materials are incapable of continuous self-monitoring and self-regulating behaviour owing to their limited single-directional chemomechanical or mechanochemical modes. Applying the concept of homeostasis to the design of autonomous materials would have substantial impacts in areas ranging from medical implants that help stabilize bodily functions to 'smart' materials that regulate energy usage. Here we present a versatile strategy for creating self-regulating, self-powered, homeostatic materials capable of precisely tailored chemo-mechano-chemical feedback loops on the nano- or microscale. We design a bilayer system with hydrogel-supported, catalyst-bearing microstructures, which are separated from a reactant-containing 'nutrient' layer. Reconfiguration of the gel in response to a stimulus induces the reversible actuation of the microstructures into and out of the nutrient layer, and serves as a highly precise 'on/off' switch for chemical reactions. We apply this design to trigger organic, inorganic and biochemical reactions that undergo reversible, repeatable cycles synchronized with the motion of the microstructures and the driving external chemical stimulus. By exploiting a continuous feedback loop between various exothermic catalytic reactions in the nutrient layer and the mechanical action of the temperature-responsive gel, we then create exemplary autonomous, self-sustained homeostatic systems that maintain a user-defined parameter--temperature--in a narrow range. The experimental results are validated using computational modelling that qualitatively captures the essential features of the self-regulating behaviour and provides additional criteria for the optimization of the homeostatic function, subsequently confirmed experimentally. This design is highly customizable owing to the broad choice of chemistries, tunable mechanics and its physical simplicity, and may lead to a variety of applications in autonomous systems with chemo-mechano-chemical transduction at their core.


Assuntos
Engenharia Química , Retroalimentação , Homeostase , Química Click , Simulação por Computador , Concentração de Íons de Hidrogênio , Manufaturas/normas , Temperatura , Fatores de Tempo
12.
Acc Chem Res ; 47(2): 530-9, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24283993

RESUMO

Dynamic materials that can sense changes in their surroundings and functionally respond by altering many of their physical characteristics are primed to be integral components of future "smart" technologies. A fundamental reason for the adaptability of biological organisms is their innate ability to convert environmental or chemical cues into mechanical motion and reconfiguration on both the molecular and macroscale. However, design and engineering of robust chemomechanical behavior in artificial materials has proven a challenge. Such systems can be quite complex and often require intricate coordination between both chemical and mechanical inputs and outputs, as well as the combination of multiple materials working cooperatively to achieve the proper functionality. It is critical to not only understand the fundamental behaviors of existing dynamic chemomechanical systems but also apply that knowledge and explore new avenues for design of novel materials platforms that could provide a basis for future adaptive technologies. In this Account, we explore the chemomechanical behavior, properties, and applications of hybrid-material surfaces consisting of environmentally sensitive hydrogels integrated within arrays of high-aspect-ratio nano- or microstructures. This bio-inspired approach, in which the volume-changing hydrogel acts as the "muscle" that reversibly actuates the microstructured "bones", is highly tunable and customizable. Although straightforward in concept, the combination of just these two materials (structures and hydrogel) has given rise to a far more complex set of actuation mechanisms and behaviors. Variations in how the hydrogel is physically integrated within the structure array provide the basis for three fundamental mechanisms of actuation, each with its own set of responsive properties and chemomechanical behavior. Further control over how the chemical stimulus is applied to the surface, such as with microfluidics, allows for generation of more precise and varied patterns of actuation. We also discuss the possible applications of these hybrid surfaces for chemomechanical manipulation of reactions, including the generation of chemomechanical feedback loops. Comparing and contrasting these many approaches and techniques, we aim to put into perspective their highly tunable and diverse capabilities but also their future challenges and impacts.


Assuntos
Hidrogéis/química , Nanoestruturas/química , Retroalimentação , Concentração de Íons de Hidrogênio , Estimulação Química
13.
J Colloid Interface Sci ; 658: 179-187, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100974

RESUMO

HYPOTHESIS: Sessile droplets solubilizing in surfactant solution are frequently encountered in practice, but the factors governing their non-equilibrium dynamics are not well understood. Here, we investigate mechanisms by which solubilizing, sessile oil droplets in aqueous surfactant solution dewet from hydrophobic substrates and spread on hydrophilic substrates. EXPERIMENTS: We quantify the dependence of droplet contact line dynamics on drop size and oil, surfactant, and substrate chemistries. We consider halogenated alkane oils as well as aromatic oils and focus on common nonionic nonylphenol ethoxylate surfactants. We correlate these results with measurements of the interfacial tensions. FINDINGS: Counter-intuitively, under a range of conditions, we observe complete dewetting of oil from hydrophobic substrates but spreading on hydrophilic substrates. The timescales needed to reach a steady-state contact angle vary widely, with some droplets examined taking over a day. We find that surfactant surface adsorption governs the contact angle on shorter timescales, while partitioning of surfactant from water to oil, and oil solubilization into the water, act on longer timescales to facilitate the complete dewetting. Understanding of the role played by surfactant and oil transport presents opportunities for tailoring sessile droplet behaviors and controlling droplet dynamics under conditions that would previously not have been considered.

14.
Nano Lett ; 12(2): 527-33, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21438614

RESUMO

Arrays of high-aspect-ratio (HAR) nano- and microstructures are of great interest for designing surfaces for applications in optics, bio-nano interfaces, microelectromechanical systems, and microfluidics, but the difficulty of systematically and conveniently varying the geometries of these structures significantly limits their design and optimization for a specific function. This paper demonstrates a low-cost, high-throughput benchtop method that enables a HAR array to be reshaped with nanoscale precision by electrodeposition of conductive polymers. The method-named STEPS (structural transformation by electrodeposition on patterned substrates)-makes it possible to create patterns with proportionally increasing size of original features, to convert isolated HAR features into a closed-cell substrate with a continuous HAR wall, and to transform a simple parent two-dimensional HAR array into new three-dimensional patterned structures with tapered, tilted, anisotropic, or overhanging geometries by controlling the deposition conditions. We demonstrate the fabrication of substrates with continuous or discrete gradients of nanostructure features, as well as libraries of various patterns, starting from a single master structure. By providing exemplary applications in plasmonics, bacterial patterning, and formation of mechanically reinforced structures, we show that STEPS enables a wide range of studies of the effect of substrate topography on surface properties leading to optimization of the structures for a specific application. This research identifies solution-based deposition of conductive polymers as a new tool in nanofabrication and allows access to 3D architectures that were previously difficult to fabricate.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Polímeros/química , Galvanoplastia , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
15.
ACS Cent Sci ; 9(3): 457-465, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968532

RESUMO

Herein, we present the direct observation via liquid-phase transmission electron microscopy (LPTEM) of the nucleation and growth pathways of structures formed by the so-called "ouzo effect", which is a classic example of surfactant-free, spontaneous emulsification. Such liquid-liquid phase separation occurs in ternary systems with an appropriate cosolvent such that the addition of the third component extracts the cosolvent and makes the other component insoluble. Such droplets are homogeneously sized, stable, and require minimal energy to disperse compared to conventional emulsification methods. Thus, ouzo precipitation processes are an attractive, straightforward, and energy-efficient technique for preparing dispersions, especially those made on an industrial scale. While this process and the resulting emulsions have been studied by numerous indirect techniques (e.g., X-ray and light scattering), direct observation of such structures and their formation at the nanoscale has remained elusive. Here, we employed the nascent technique of LPTEM to simultaneously evaluate droplet growth and nanostructure. Observation of such emulsification and its rate dependence is a promising indication that similar LPTEM methodologies may be used to investigate emulsion formation and kinetics.

16.
Phys Rev E ; 107(2-1): 024608, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932547

RESUMO

The gravitational settling of oil droplets solubilizing in an aqueous micellar solution contained in a capillary channel is investigated. The motion of these active droplets reflects a competition between gravitational and Marangoni forces, the latter due to interfacial tension gradients generated by differences in filled-micelle concentrations along the oil-water interface. This competition is studied by varying the surfactant concentration, the density difference between the droplet and the continuous phase, and the viscosity of the continuous phase. The Marangoni force enhances the settling speed of an active droplet when compared to the Hadamard-Rybczynski prediction for a (surfactant free) droplet settling in Stokes flow. The Marangoni force can also induce lateral droplet motion, suggesting that the Marangoni and gravitational forces are not always aligned. The decorrelation rate (α) of the droplet motion, measured as the initial slope of the velocity autocorrelation and indicative of the extent to which the Marangoni and gravitational forces are aligned during settling, is examined as a function of the droplet size: correlated motion (small values of α) is observed at both small and large droplet radii, whereas significant decorrelation can occur between these limits. This behavior of active droplets settling in a capillary channel is in marked contrast to that observed in a dish, where the decorrelation rate increases with the droplet radius before saturating at large values of droplet radius. A simple relation for the crossover radius at which the maximal value of α occurs for an active settling droplet is proposed.

17.
Adv Mater ; 35(19): e2210665, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808776

RESUMO

An experimental investigation and the optical modeling of the structural coloration produced from total internal reflection interference within 3D microstructures are described. Ray-tracing simulations coupled with color visualization and spectral analysis techniques are used to model, examine, and rationalize the iridescence generated for a range of microgeometries, including hemicylinders and truncated hemispheres, under varying illumination conditions. An approach to deconstruct the observed iridescence and complex far-field spectral features into its elementary components and systematically link them to ray trajectories that emanate from the illuminated microstructures is demonstrated. The results are compared with experiments, wherein microstructures are fabricated with methods such as chemical etching, multiphoton lithography, and grayscale lithography. Microstructure arrays patterned on surfaces with varying orientation and size lead to unique color-traveling optical effects and highlight opportunities for how total internal reflection interference can be used to create customizable reflective iridescence. The findings herein provide a robust conceptual framework for rationalizing this multibounce interference mechanism and establish approaches for characterizing and tailoring the optical and iridescent properties of microstructured surfaces.

18.
J Am Chem Soc ; 134(9): 4007-10, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22335831

RESUMO

Integration of catalytic nanostructured platinum and palladium within 3D microscale structures or fluidic environments is important for systems ranging from micropumps to microfluidic chemical reactors and energy converters. We report a straightforward procedure to fabricate microscale patterns of nanocrystalline platinum and palladium using multiphoton lithography. These materials display excellent catalytic, electrical, and electrochemical properties, and we demonstrate high-resolution integration of catalysts within 3D defined microenvironments to generate directed autonomous particle and fluid transport.


Assuntos
Nanopartículas Metálicas/química , Paládio/química , Platina/química , Catálise , Tamanho da Partícula , Propriedades de Superfície
19.
ACS Appl Mater Interfaces ; 14(24): 28163-28173, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35686829

RESUMO

Fabrication and processing approaches that facilitate the ease of patterning and the integration of nanomaterials into sensor platforms are of significant utility and interest. In this work, we report the use of laser-induced thermal voxels (LITV) to fabricate microscale, planar gas sensors directly from solutions of metal salts. LITV offers a facile platform to directly integrate nanocrystalline metal oxide and mixed metal oxide materials onto heating platforms, with access to a wide variety of compositions and morphologies including many transition metals and noble metals. The unique patterning and synthesis flexibility of LITV enable the fabrication of chemically and spatially tailorable microscale sensing devices. We investigate the sensing performance of a representative set of n-type and p-type LITV-deposited metal oxides and their mixtures (CuO, NiO, CuO/ZnO, and Fe2O3/Pt) in response to reducing and oxidizing gases (H2S, NO2, NH3, ethanol, and acetone). These materials show a broad range of sensitivities and notably a strong response of NiO to ethanol and acetone (407 and 301% R/R0 at 250 °C, respectively), along with a 5- to 20-fold sensitivity enhancement for CuO/ZnO to all gases measured over pure CuO, highlighting the opportunities of LITV for the creation of mixed-material microscale sensors.

20.
ACS Nano ; 15(6): 9796-9807, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34061497

RESUMO

We investigate a laser direct-write method to synthesize and deposit metastable, mixed transition metal oxides and evaluate their performance as oxygen evolution reaction catalysts. This laser processing method enabled the rapid synthesis of diverse heterogeneous alloy and oxide catalysts directly from cost-effective solution precursors, including catalysts with a high density of nanocrystalline metal alloy inclusions within an amorphous oxide matrix. The nanoscale heterogeneous structures of the synthesized catalysts were consistent with reactive force-field Monte Carlo calculations. By evaluating the impact of varying transition metal oxide composition ratios, we created a stable Fe0.63Co0.19Ni0.18Ox/C catalyst with a Tafel slope of 38.23 mV dec-1 and overpotential of 247 mV, a performance similar to that of IrO2. Synthesized Fe0.63Co0.19Ni0.18Ox/C and Fe0.14Co0.46Ni0.40Ox/C catalysts were experimentally compared in terms of catalytic performance and structural characteristics to determine that higher iron content and a less crystalline structure in the secondary matrix decrease the charge transfer resistance and thus is beneficial for electrocatalytic activity. This conclusion is supported by density-functional theory calculations showing distorted active sites in ternary metal catalysts are key for lowering overpotentials for the oxygen evolution reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA