Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Endocr Rev ; 29(7): 898-938, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18815314

RESUMO

The iodothyronine deiodinases initiate or terminate thyroid hormone action and therefore are critical for the biological effects mediated by thyroid hormone. Over the years, research has focused on their role in preserving serum levels of the biologically active molecule T(3) during iodine deficiency. More recently, a fascinating new role of these enzymes has been unveiled. The activating deiodinase (D2) and the inactivating deiodinase (D3) can locally increase or decrease thyroid hormone signaling in a tissue- and temporal-specific fashion, independent of changes in thyroid hormone serum concentrations. This mechanism is particularly relevant because deiodinase expression can be modulated by a wide variety of endogenous signaling molecules such as sonic hedgehog, nuclear factor-kappaB, growth factors, bile acids, hypoxia-inducible factor-1alpha, as well as a growing number of xenobiotic substances. In light of these findings, it seems clear that deiodinases play a much broader role than once thought, with great ramifications for the control of thyroid hormone signaling during vertebrate development and metamorphosis, as well as injury response, tissue repair, hypothalamic function, and energy homeostasis in adults.


Assuntos
Iodeto Peroxidase/metabolismo , Glândula Tireoide/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Animais , Humanos , Transdução de Sinais , Doenças da Glândula Tireoide/metabolismo , Glândula Tireoide/enzimologia
2.
Nat Cell Biol ; 7(7): 698-705, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15965468

RESUMO

WSB-1 is a SOCS-box-containing WD-40 protein of unknown function that is induced by Hedgehog signalling in embryonic structures during chicken development. Here we show that WSB-1 is part of an E3 ubiquitin ligase for the thyroid-hormone-activating type 2 iodothyronine deiodinase (D2). The WD-40 propeller of WSB-1 recognizes an 18-amino-acid loop in D2 that confers metabolic instability, whereas the SOCS-box domain mediates its interaction with a ubiquitinating catalytic core complex, modelled as Elongin BC-Cul5-Rbx1 (ECS(WSB-1)). In the developing tibial growth plate, Hedgehog-stimulated D2 ubiquitination via ECS(WSB-1) induces parathyroid hormone-related peptide (PTHrP), thereby regulating chondrocyte differentiation. Thus, ECS(WSB-1) mediates a mechanism by which 'systemic' thyroid hormone can effect local control of the Hedgehog-PTHrP negative feedback loop and thus skeletogenesis.


Assuntos
Lâmina de Crescimento/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteínas/fisiologia , Hormônios Tireóideos/metabolismo , Transativadores/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Embrião de Galinha , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Elonguina , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Lâmina de Crescimento/embriologia , Proteínas Hedgehog , Humanos , Imunoprecipitação , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Camundongos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Hormônios Tireóideos/farmacologia , Tíbia/citologia , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Transativadores/genética , Transativadores/farmacologia , Fatores de Transcrição/metabolismo , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Contendo Repetições de beta-Transducina/genética , Iodotironina Desiodinase Tipo II
3.
Metabolites ; 12(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35888735

RESUMO

The muscle stem-cell niche comprises numerous cell types, which coordinate the regeneration process after injury. Thyroid hormones are one of the main factors that regulate genes linked to skeletal muscle. In this way, deiodinase types 2 and 3 are responsible for the fine-tuning regulation of the local T3 amount. Although their expression and activity have already been identified during muscle regeneration, it is of utmost importance to identify the cell type and temporal pattern of expression after injury to thoroughly comprehend their therapeutic potential. Here, we confirmed the expression of Dio2 and Dio3 in the whole tibialis anterior muscle. We identified, on a single-cell basis, that Dio2 is present in paired box 7 (PAX7)-positive cells starting from day 5 after injury. Dio2 is present in platelet derived growth factor subunit A (PDGFA)-expressing fibro-adipogenic progenitor cells between days 7 and 14 after injury. Dio3 is detected in myogenic differentiation (MYOD)-positive stem cells and in macrophages immediately post injury and thereafter. Interestingly, Dio2 and Dio3 RNA do not appear to be present in the same type of cell throughout the process. These results provide further insight into previously unseen aspects of the crosstalk and synchronized regulation of T3 in injured muscle mediated by deiodinases. The set of findings described here further define the role of deiodinases in muscle repair, shedding light on potential new forms of treatment for sarcopenia and other muscular diseases.

4.
PLoS One ; 17(6): e0269300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35648793

RESUMO

OBJECTIVE: To conduct a systematic review evaluating the impact of stretching on inflammation and its resolution using in vivo rodent models. Findings are evaluated for their potential to inform the design of clinical yoga studies to assess the impact of yogic stretching on inflammation and health. METHODS: Studies were identified using four databases. Eligible publications included English original peer-reviewed articles between 1900-May 2020. Studies included those investigating the effect of different stretching techniques administered to a whole rodent model and evaluating at least one inflammatory outcome. Studies stretching the musculoskeletal and integumentary systems were considered. Two reviewers removed duplicates, screened abstracts, conducted full-text reviews, and assessed methodological quality. RESULTS: Of 766 studies identified, 25 were included for synthesis. Seven (28%) studies had a high risk of bias in 3 out of 10 criteria. Experimental stretching protocols resulted in a continuum of inflammatory responses with therapeutic and injurious effects, which varied with a combination of three stretching parameters--duration, frequency, and intensity. Relative to injurious stretching, therapeutic stretching featured longer-term stretching protocols. Evidence of pro- and mixed-inflammatory effects of stretching was found in 16 muscle studies. Evidence of pro-, anti-, and mixed-inflammatory effects was found in nine longer-term stretching studies of the integumentary system. CONCLUSION: Despite the overall high quality of these summarized studies, evaluation of stretching protocols paralleling yogic stretching is limited. Both injurious and therapeutic stretching induce aspects of inflammatory responses that varied among the different stretching protocols. Inflammatory markers, such as cytokines, are potential outcomes to consider in clinical yoga studies. Future translational research evaluating therapeutic benefits should consider in vitro studies, active vs. passive stretching, shorter-term vs. longer-term interventions, systemic vs. local effects of stretching, animal models resembling human anatomy, control and estimation of non-specific stresses, development of in vivo self-stretching paradigms targeting myofascial tissues, and in vivo models accounting for gross musculoskeletal posture.


Assuntos
Meditação , Exercícios de Alongamento Muscular , Yoga , Animais , Humanos , Inflamação/terapia , Pesquisa Translacional Biomédica
5.
Am J Physiol Endocrinol Metab ; 301(5): E818-24, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21771965

RESUMO

The FoxO3-dependent increase in type II deiodinase (D2), which converts the prohormone thyroxine (T(4)) to 3,5,3'-triiodothyronine (T(3)), is required for normal mouse skeletal muscle differentiation and regeneration. This implies a requirement for an increase in D2-generated intracellular T(3) under these conditions, which has not been directly demonstrated despite the presence of D2 activity in skeletal muscle. We directly show that D2-mediated T(4)-to-T(3) conversion increases during differentiation in C(2)C(12) myoblast and primary cultures of mouse neonatal skeletal muscle precursor cells, and that blockade of D2 eliminates this. In adult mice given (125)I-T(4) and (131)I-T(3), the intracellular (125)I-T(3)/(131)I-T(3) ratio is significantly higher than in serum in both the D2-expressing cerebral cortex and the skeletal muscle of wild-type, but not D2KO, mice. In D1-expressing liver and kidney, the (125)I-T(3)/(131)I-T(3) ratio does not differ from that in serum. Hypothyroidism increases D2 activity, and in agreement with this, the difference in (125)I-T(3)/(131)I-T(3) ratio is increased further in hypothyroid wild-type mice but not altered in the D2KO. Notably, in wild-type but not in D2KO mice, the muscle production of (125)I-T(3) is doubled after skeletal muscle injury. Thus, D2-mediated T(4)-to-T(3) conversion generates significant intracellular T(3) in normal mouse skeletal muscle, with the increased T(3) required for muscle regeneration being provided by increased D2 synthesis, not by T(3) from the circulation.


Assuntos
Iodeto Peroxidase/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Regeneração , Tri-Iodotironina/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/química , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Radioisótopos do Iodo/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/química , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Regeneração/fisiologia , Tri-Iodotironina Reversa/farmacologia , Iodotironina Desiodinase Tipo II
6.
Mol Cell Endocrinol ; 538: 111450, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506867

RESUMO

Euryhaline fishes are capable of maintaining osmotic homeostasis in a wide range of environmental salinities. Several pleiotropic hormones, including prolactin, growth hormone, and thyroid hormones (THs) are mediators of salinity acclimation. It is unclear, however, the extent to which THs and the pituitary-thyroid axis promote the adaptive responses of key osmoregulatory organs to freshwater (FW) environments. In the current study, we characterized circulating thyroxine (T4) and 3-3'-5-triiodothyronine (T3) levels in parallel with the outer ring deiodination (ORD) activities of deiodinases (dios) and mRNA expression of dio1, dio2, and dio3 in gill during the acclimation of Mozambique tilapia (Oreochromis mossambicus) to FW. Tilapia transferred from seawater (SW) to FW exhibited reduced plasma T4 and T3 levels at 6 h. These reductions coincided with an increase in branchial dio2-like activity and decreased branchial dio1 gene expression. To assess whether dios respond to osmotic conditions and/or systemic signals, gill filaments were exposed to osmolalities ranging from 280 to 450 mOsm/kg in an in vitro incubation system. Gene expression of branchial dio1, dio2, and dio3 was not directly affected by extracellular osmotic conditions. Lastly, we observed that dio1 and dio2 expression was stimulated by thyroid-stimulating hormone in hypophysectomized tilapia, suggesting that branchial TH metabolism is regulated by systemic signals. Our collective findings suggest that THs are involved in the FW acclimation of Mozambique tilapia through their interactions with branchial deiodinases that modulate their activities in a key osmoregulatory organ.


Assuntos
Iodeto Peroxidase/genética , Tiroxina/sangue , Tilápia/fisiologia , Tri-Iodotironina/sangue , Aclimatação , Animais , Feminino , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Brânquias/metabolismo , Brânquias/fisiologia , Masculino , Salinidade
7.
Cancers (Basel) ; 13(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205977

RESUMO

Cancer angiogenesis is required to support energetic demand and metabolic stress, particularly during conditions of hypoxia. Coupled to neo-vasculogenesis, cancer cells rewire metabolic programs to sustain growth, survival and long-term maintenance. Thyroid hormone (TH) signaling regulates growth and differentiation in a variety of cell types and tissues, thus modulating hyper proliferative processes such as cancer. Herein, we report that TH coordinates a global program of metabolic reprogramming and induces angiogenesis through up-regulation of the VEGF-A gene, which results in the enhanced proliferation of tumor endothelial cells. In vivo conditional depletion of the TH activating enzyme in a mouse model of cutaneous squamous cell carcinoma (SCC) reduces the concentration of TH in the tumoral cells and results in impaired VEGF-A production and attenuated angiogenesis. In addition, we found that TH induces the expression of the glycolytic genes and fosters lactate production, which are key traits of the Warburg effect. Taken together, our results reveal a TH-VEGF-A-HIF1α regulatory axis leading to enhanced angiogenesis and glycolytic flux, which may represent a target for SCC therapy.

8.
Thyroid ; 31(1): 115-127, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32787533

RESUMO

Background: The type 2 deiodinase (DIO2) converts thyroxine to 3,3',5-triiodothyronine (T3), modulating intracellular T3. An increase in DIO2 within muscle stem cells during skeletal muscle regeneration leads to T3-dependent potentiation of differentiation. The muscle stem cell niche comprises numerous cell types, which coordinate the regeneration process. For example, muscle stem cells provide secretory signals stimulating endothelial cell-mediated vascular repair, and, in turn, endothelial cells promote muscle stem differentiation. We hypothesized that Dio2 loss in muscle stem cells directly impairs muscle stem cell-endothelial cell communication, leading to downstream disruption of endothelial cell function. Methods: We assessed the production of proangiogenic factors in differentiated C2C12 cells and in a C2C12 cell line without Dio2 (D2KO C2C12) by real-time quantitative-polymerase chain reaction and enzyme-linked immunosorbent assay. Conditioned medium (CM) was collected daily in parallel to evaluate its effects on human umbilical vein endothelial cell (HUVEC) proliferation, migration and chemotaxis, and vascular network formation. The effects of T3-treatment on vascular endothelial growth factor (Vegfa) mRNA expression in C2C12 cells and mouse muscle were assessed. Chromatin immunoprecipitation (ChIP) identified thyroid hormone receptor (TR) binding to the Vegfa gene. Using mice with a targeted disruption of Dio2 (D2KO mice), we determined endothelial cell number by immunohistochemistry/flow cytometry and evaluated related gene expression in both uninjured and injured skeletal muscle. Results: In differentiated D2KO C2C12 cells, Vegfa expression was 46% of wildtype (WT) C2C12 cells, while secreted VEGF was 45%. D2KO C2C12 CM exhibited significantly less proangiogenic effects on HUVECs. In vitro and in vivo T3 treatment of C2C12 cells and WT mice, and ChIP using antibodies against TRα, indicated that Vegfa is a direct genomic T3 target. In uninjured D2KO soleus muscle, Vegfa expression was decreased by 28% compared with WT mice, while endothelial cell numbers were decreased by 48%. Seven days after skeletal muscle injury, D2KO mice had 36% fewer endothelial cells, coinciding with an 83% decrease in Vegfa expression in fluorescence-activated cell sorting purified muscle stem cells. Conclusion:Dio2 loss in the muscle stem cell impairs muscle stem cell-endothelial cell crosstalk via changes in the T3-responsive gene Vegfa, leading to downstream impairment of endothelial cell function both in vitro and in vivo.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Iodeto Peroxidase/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/enzimologia , Mioblastos Esqueléticos/enzimologia , Neovascularização Fisiológica , Comunicação Parácrina , Regeneração , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Humanos , Iodeto Peroxidase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Mioblastos Esqueléticos/patologia , Transdução de Sinais , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Iodotironina Desiodinase Tipo II
9.
Cell Metab ; 1(4): 231-44, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16054068

RESUMO

Despite the well-established role of liver X receptors (LXRs) in regulating cholesterol homeostasis, their contribution to lipid homeostasis remains unclear. Here we show that LXR null mice are defective in hepatic lipid metabolism and are resistant to obesity when challenged with a diet containing both high fat and cholesterol. This phenotype is dependent on the presence of dietary cholesterol and is accompanied by the aberrant production of thyroid hormone in liver. Interestingly, the inability of LXR-/- mice to induce SREBP-1c-dependent lipogenesis does not explain the LXR-/- phenotype, since SREBP-1c null mice are not obesity resistant. Instead, the LXR-/- response is due to abnormal energy dissipation resulting from uncoupled oxidative phosphorylation and ectopic expression of uncoupling proteins in muscle and white adipose. These studies suggest that, by selectively sensing the cholesterol component of a lipid-rich diet, LXRs govern the balance between storage and oxidation of dietary fat.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos , Peroxidação de Lipídeos/fisiologia , Fatores de Transcrição/metabolismo , Animais , Colesterol/metabolismo , Proteínas de Ligação a DNA , Hiperlipidemias/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Receptores X do Fígado , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Receptores Nucleares Órfãos , Oxirredução , Receptores Citoplasmáticos e Nucleares , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
10.
Mol Cell Biol ; 27(13): 4774-83, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17452445

RESUMO

Ubiquitination is a critical posttranslational regulator of protein stability and/or subcellular localization. Here we show that ubiquitination can also regulate proteins by transiently inactivating enzymatic function through conformational change in a dimeric enzyme, which can be reversed upon deubiquitination. Our model system is the thyroid hormone-activating type 2 deiodinase (D2), an endoplasmic reticulum-resident type 1 integral membrane enzyme. D2 exists as a homodimer maintained by interacting surfaces at its transmembrane and globular cytosolic domains. The D2 dimer associates with the Hedgehog-inducible ubiquitin ligase WSB-1, the ubiquitin conjugase UBC-7, and VDU-1, a D2-specific deubiquitinase. Upon binding of T4, its natural substrate, D2 is ubiquitinated, which inactivates the enzyme by interfering with D2's globular interacting surfaces that are critical for dimerization and catalytic activity. This state of transient inactivity and change in dimer conformation persists until deubiquitination. The continuous association of D2 with this regulatory protein complex supports rapid cycles of deiodination, conjugation to ubiquitin, and enzyme reactivation by deubiquitination, allowing tight control of thyroid hormone action.


Assuntos
Iodeto Peroxidase/química , Iodeto Peroxidase/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Domínio Catalítico , Linhagem Celular , Dimerização , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
11.
Am J Phys Med Rehabil ; 99(11): 1012-1019, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32427602

RESUMO

OBJECTIVE: Active stretching of the body is integral to complementary mind-body therapies such as yoga, as well as physical therapy, yet the biologic mechanisms underlying its therapeutic effects remain largely unknown. A previous study showed the impact of active stretching on inflammatory processes in rats. The present study tested the feasibility of using a porcine model, with a closer resemblance to human anatomy, to study the effects of active stretching in the resolution of localized inflammation. DESIGN: A total of 12 pigs were trained to stretch before subcutaneous bilateral Carrageenan injection in the back at the L3 vertebrae, 2 cm from the midline. Animals were randomized to no-stretch or stretch, twice a day for 5 mins over 48 hrs. Animals were euthanized for tissue collection 48 hrs postinjection. RESULTS: The procedure was well tolerated by the pigs. On average, lesion area was significantly smaller by 36% in the stretch group compared with the no-stretch group (P = 0.03). CONCLUSION: This porcine model shows promise for studying the impact of active stretching on inflammation-resolution mechanisms. These results are relevant to understanding the stretching-related therapeutic mechanisms of mind-body therapies. Future studies with larger samples are warranted.


Assuntos
Inflamação/reabilitação , Vértebras Lombares , Terapias Mente-Corpo/métodos , Exercícios de Alongamento Muscular , Doenças da Coluna Vertebral/reabilitação , Animais , Carragenina , Modelos Animais de Doenças , Estudos de Viabilidade , Inflamação/induzido quimicamente , Doenças da Coluna Vertebral/induzido quimicamente , Suínos , Resultado do Tratamento
12.
Redox Biol ; 24: 101228, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31153038

RESUMO

Thyroid hormone (TH) is a key metabolic regulator that acts by coordinating short- and long-term energy needs. Accordingly, significant metabolic changes are observed depending on thyroid status. Although it is established that hyperthyroidism augments basal energy consumption, thus resulting in an enhanced metabolic state, the net effects on cellular respiration and generation of reactive oxygen species (ROS) remain unclear. To elucidate the effects of augmented TH signal in muscle cells, we generated a doxycycline-inducible cell line in which the expression of the TH-activating enzyme, type 2 deiodinase (D2), is reversibly turned on by the "Tet-ON" system. Interestingly, increased intracellular TH caused a net shift from oxidative phosphorylation to glycolysis and a consequent increase in the extracellular acidification rate. As a result, mitochondrial ROS production, and both the basal and doxorubicin-induced production of cellular ROS were reduced. Importantly, the expression of a set of antioxidant genes was up-regulated, and, among them, the mitochondrial scavenger Sod2 was specifically induced at transcriptional level by D2-mediated TH activation. Finally, we observed that attenuation of oxidative stress and increased levels of SOD2 are key elements of the differentiating cascade triggered by TH and D2, thereby establishing that D2 is essential in coordinating metabolic reprogramming of myocytes during myogenic differentiation. In conclusion, our findings indicate that TH plays a key role in oxidative stress dynamics by regulating ROS generation. Our novel finding that TH and its intracellular metabolism act as mitochondrial detoxifying agents sheds new light on metabolic processes relevant to muscle physiology.


Assuntos
Iodeto Peroxidase/metabolismo , Mitocôndrias/metabolismo , Desenvolvimento Muscular , Oxirredução , Estresse Oxidativo , Hormônios Tireóideos/metabolismo , Animais , Antioxidantes/metabolismo , Glicólise , Masculino , Camundongos , Desenvolvimento Muscular/genética , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
13.
Endocrinology ; 160(5): 1205-1222, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951174

RESUMO

The type 2 iodothyronine-deiodinase (D2) enzyme converts T4 to T3, and mice deficient in this enzyme [D2 knockout (D2KO) mice] have decreased T3 derived from T4 in skeletal muscle despite normal circulating T3 levels. Because slow skeletal muscle is particularly susceptible to changes in T3 levels, we expected D2 inactivation to result in more pronounced slow-muscle characteristics in the soleus muscle, mirroring hypothyroidism. However, ex vivo studies of D2KO soleus revealed higher rates of twitch contraction and relaxation and reduced resistance to fatigue. Immunostaining of D2KO soleus showed that these properties were associated with changes in muscle fiber type composition, including a marked increase in the number of fast, glycolytic type IIB fibers. D2KO soleus muscle fibers had a larger cross-sectional area, and this correlated with increased myonuclear accretion in myotubes formed from D2KO skeletal muscle precursor cells differentiated in vitro. Consistent with our functional findings, D2KO soleus gene expression was markedly different from that in hypothyroid wild-type (WT) mice. Comparison of gene expression between euthyroid WT and D2KO mice indicated that PGC-1α, a T3-dependent regulator of slow muscle fiber type, was decreased by ∼50% in D2KO soleus. Disruption of Dio2 in the C2C12 myoblast cell line led to a significant decrease in PGC-1α expression and a faster muscle phenotype upon differentiation. These results indicate that D2 loss leads to significant changes in soleus contractile function and fiber type composition that are inconsistent with local hypothyroidism and suggest that reduced levels of PCG-1α may contribute to the observed phenotypical changes.


Assuntos
Iodeto Peroxidase/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Mioblastos/metabolismo , Animais , Linhagem Celular , Expressão Gênica , Iodeto Peroxidase/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular/genética , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Iodotironina Desiodinase Tipo II
14.
Endocrinology ; 149(9): 4329-35, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18467436

RESUMO

To explore the effect of refeeding on recovery of TRH gene expression in the hypothalamic paraventricular nucleus (PVN) and its correlation with the feeding-related neuropeptides in the arcuate nucleus (ARC), c-fos immunoreactivity (IR) in the PVN and ARC 2 h after refeeding and hypothalamic TRH, neuropeptide Y (NPY) and agouti-related protein (AGRP) mRNA levels 4, 12, and 24 h after refeeding were studied in Sprague-Dawley rats subjected to prolonged fasting. Despite rapid reactivation of proopiomelanocortin neurons by refeeding as demonstrated by c-fos IR in ARC alpha-MSH-IR neurons and ventral parvocellular subdivision PVN neurons, c-fos IR was present in only 9.7 +/- 1.1% hypophysiotropic TRH neurons. Serum TSH levels remained suppressed 4 and 12 h after the start of refeeding, returning to fed levels after 24 h. Fasting reduced TRH mRNA compared with fed animals, and similar to TSH, remained suppressed at 4 and 12 h after refeeding, returning toward normal at 24 h. AGRP and NPY gene expression in the ARC were markedly elevated in fasting rats, AGRP mRNA returning to baseline levels 12 h after refeeding and NPY mRNA remaining persistently elevated even at 24 h. These data raise the possibility that refeeding-induced activation of melanocortin signaling exerts differential actions on its target neurons in the PVN, an early action directed at neurons that may be involved in satiety, and a later action on hypophysiotropic TRH neurons involved in energy expenditure, potentially mediated by sustained elevations in AGRP and NPY. This response may be an important homeostatic mechanism to allow replenishment of depleted energy stores associated with fasting.


Assuntos
Ingestão de Alimentos/fisiologia , Melanocortinas/metabolismo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Jejum/fisiologia , Masculino , Neurônios/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Tireotropina/genética , Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo
15.
Diabetes ; 67(7): 1322-1331, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29625991

RESUMO

Previously, we showed that thyroid hormone (TH) triiodothyronine (T3) enhanced ß-cell functional maturation through induction of Mafa High levels of T3 have been linked to decreased life span in mammals and low levels to lengthened life span, suggesting a relationship between TH and aging. Here, we show that T3 increased p16Ink4a (a ß-cell senescence marker and effector) mRNA in rodent and human ß-cells. The kinetics of Mafa and p16Ink4a induction suggested both genes as targets of TH via TH receptors (THRs) binding to specific response elements. Using specific agonists CO23 and GC1, we showed that p16Ink4a expression was controlled by THRA and Mafa by THRB. Using chromatin immunoprecipitation and a transient transfection yielding biotinylated THRB1 or THRA isoforms to achieve specificity, we determined that THRA isoform bound to p16Ink4a , whereas THRB1 bound to Mafa but not to p16Ink4a On a cellular level, T3 treatment accelerated cell senescence as shown by increased number of ß-cells with acidic ß-galactosidase activity. Our data show that T3 can simultaneously induce both maturation (Mafa) and aging (p16Ink4a ) effectors and that these dichotomous effects are mediated through different THR isoforms. These findings may be important for further improving stem cell differentiation protocols to produce functional ß-cells for replacement therapies in diabetes.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Senescência Celular , Células Secretoras de Insulina/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Animais , Biomarcadores/análise , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Humanos , Células Secretoras de Insulina/fisiologia , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
16.
Thyroid ; 28(4): 465-471, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29608439

RESUMO

BACKGROUND: In older patients, thyroid nodules are frequently detected and referred for evaluation, though usually prove to be benign disease or low-risk cancer. Therefore, management should be guided not solely by malignancy risk, but also by the relative risks of any intervention. Unfortunately, few such data are available for patients ≥70 years old. METHODS: All consecutive patients ≥70 years old assessed by ultrasound (US) and fine-needle aspiration (FNA) between 1995 and 2015 were analyzed. Clinical, US, and histologic data, including patient comorbidities and outcomes, were obtained. Imaging and cytology results from initial evaluation were reviewed to detect significant-risk thyroid cancer (SRTC), which was defined as anaplastic, medullary, or poorly differentiated carcinoma, or the presence of distant metastases. Overall survival analyses were then performed to assist with risk-to-benefit assessment. RESULTS: A total of 1129 patients ≥70 years old with 2527 nodules ≥1 cm were evaluated. FNA was safe in all, and cytology proved benign in 67.3% of patients. However, FNA led to surgery in 208 patients, of whom 93 (44.7%) had benign histopathology. Among all patients who underwent FNA, only 17 (1.5%) SRTC were identified, all of which were preoperatively identifiable by imaging and/or cytology. These SRTC were responsible for all (n = 10; 0.9%) thyroid cancer deaths. Among all other patients (n = 1112), 160 deaths (14.4%) were confirmed during a median follow-up of four years. None of these were thyroid cancer related. Survival analysis for these 1112 patients demonstrated that a separate non-thyroidal malignancy or coronary artery disease at the time of nodule evaluation was associated with increased mortality compared to those without these diagnoses (hazard ratio = 2.32 [confidence interval 1.66-3.26]; p < 0.01), confirming these are important variables to identify prior to thyroid nodule evaluation. CONCLUSIONS: For patients ≥70 years old, US and FNA are safe and prove helpful in identifying SRTC and benign cytology. However, the surgical management of patients ≥70 years old presenting without high-risk findings should be tempered, especially when comorbid illness is identified.


Assuntos
Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Biópsia por Agulha Fina , Citodiagnóstico , Feminino , Humanos , Masculino , Estudos Retrospectivos , Medição de Risco , Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/patologia , Ultrassonografia
17.
Endocrinology ; 148(3): 954-60, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17138654

RESUMO

For T(3) to mediate its biological effects, the prohormone T(4) must be activated by removal of an outer-ring iodine by the type 1 or 2 deiodinases (D1 and D2) with approximately 60% of the daily T(3) production in rodents being produced extrathyroidally through this pathway. To further define the role of these enzymes in thyroid hormone homeostasis, we backcrossed the targeted disruption of the Dio2 gene into C3H/HeJ (C3H) mice with genetically low D1 expression to create the C3H-D2KO mouse. Remarkably, these mice maintain euthyroid serum T(3) levels with normal growth and no decrease in expression of hepatic T(3)-responsive genes. However, serum T(4) is increased 1.2-fold relative to the already elevated C3H levels, and serum TSH is increased 1.4-fold. Despite these increases, thyroidal (125)I uptake indicates no difference in thyroidal activity between C3H-D2KO and C3H mice. Although C3H-D2KO hepatic and renal D1 activities were well below those observed in wild-type mice (approximately 0.1-fold for both), they were 8-fold and 2-fold higher, respectively, relative to C3H mice. Thyroidal D1 and cerebral cortical type 3 deiodinase activity were unchanged between C3H-D2KO and C3H mice. In conclusion, C3H-D2KO mice have notably elevated serum T(4) levels, and this, in conjunction with residual D1 activity, is likely an important role in the maintenance of euthyroid serum T(3) concentrations.


Assuntos
Iodeto Peroxidase/genética , Tiroxina/metabolismo , Tri-Iodotironina/sangue , Tri-Iodotironina/metabolismo , Animais , Cruzamentos Genéticos , Feminino , Iodeto Peroxidase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Iodotironina Desiodinase Tipo II
18.
J Clin Invest ; 112(2): 189-96, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12865408

RESUMO

The type 2 iodothyronine deiodinase (D2) is an integral membrane ER-resident selenoenzyme that activates the pro-hormone thyroxine (T4) and supplies most of the 3,5,3'-triiodothyronine (T3) that is essential for brain development. D2 is inactivated by selective conjugation to ubiquitin, a process accelerated by T4 catalysis and essential for the maintenance of T3 homeostasis. A yeast two-hybrid screen of a human-brain library with D2 as bait identified von Hippel-Lindau protein-interacting deubiquitinating enzyme-1 (VDU1). D2 interaction with VDU1 and VDU2, a closely related deubiquitinase, was confirmed in mammalian cells. Both VDU proteins colocalize with D2 in the ER, and their coexpression prolongs D2 half-life and activity by D2 deubiquitination. VDU1, but not VDU2, is markedly increased in brown adipocytes by norepinephrine or cold exposure, further amplifying the increase in D2 activity that results from catecholamine-stimulated de novo synthesis. Thus, deubiquitination regulates the supply of active thyroid hormone to brown adipocytes and other D2-expressing cells.


Assuntos
Endopeptidases/fisiologia , Iodeto Peroxidase/fisiologia , Hormônios Tireóideos/biossíntese , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Ubiquitina/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Western Blotting , Catálise , Catecolaminas/farmacologia , Linhagem Celular , Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Biblioteca Gênica , Humanos , Ligases/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Plasmídeos/metabolismo , Ligação Proteica , Frações Subcelulares , Temperatura , Tiroxina/metabolismo , Fatores de Tempo , Tri-Iodotironina/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina Tiolesterase , Proteína Supressora de Tumor Von Hippel-Lindau , Iodotironina Desiodinase Tipo II
19.
J Clin Endocrinol Metab ; 102(12): 4642-4647, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040691

RESUMO

Context: Thyroid nodule growth was once considered concerning for malignancy, but data showing that benign nodules grow questioned the use of this paradigm. To date, however, no studies have adequately evaluated whether growth rates differ in malignant vs. benign nodules. Objective: To sonographically evaluate growth rates in benign and malignant thyroid nodules ≥1 cm. Design: Prospective, cohort study of patients with tissue diagnosis of benign or malignant disease, with repeated ultrasound evaluation six or more months apart. Main Outcomes: Growth rate in largest dimension of malignant compared with benign thyroid nodules. Regression models were used to evaluate predictors of growth. Results: Malignant nodules (126) met inclusion criteria (≥6-month nonoperative followup) and were compared with 1363 benign nodules. Malignant nodules were not found to be uniquely selected or prospectively observed solely for low-risk phenotype. Median ultrasound intervals were similar (21.8 months for benign nodules; 20.9 months for malignant nodules). Malignant nodules were more likely to grow >2 mm/y compared with benign nodules [relative risk (RR) = 2.5, 95% confidence interval (CI), 1.6 to 3.1; P < 0.001], which remained true after adjustment for clinical factors. The RR of a nodule being malignant increased with faster growth rates. Malignant nodules growing >2 mm/y had greater odds of being more aggressive cancers [intermediate risk: odds ratio (OR) = 2.99; 95% CI, 1.20 to 7.47; P = 0.03; higher risk: OR = 8.69; 95% CI, 1.78 to 42.34; P = 0.02]. Conclusions: Malignant nodules, especially higher-risk phenotypes, grow faster than benign nodules. As growth >2 mm/y predicts malignant compared with benign disease, this clinical parameter can contribute to the assessment of thyroid cancer risk.


Assuntos
Neoplasias da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/diagnóstico por imagem , Adulto , Idoso , Biópsia por Agulha Fina , Estudos de Coortes , Diagnóstico Diferencial , Progressão da Doença , Feminino , Humanos , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/patologia , Ultrassonografia
20.
Endocrinology ; 146(3): 1568-75, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15591136

RESUMO

Mice with one thyroid hormone receptor (TR) alpha-1 allele encoding a dominant negative mutant receptor (TR alpha1(PV/+)) have persistently elevated serum T3 levels (1.9-fold above normal). They also have markedly increased hepatic type 1 iodothyronine deiodinase (D1) mRNA and enzyme activity (4- to 5-fold), whereas other hepatic T3-responsive genes, such as Spot14 and mitochondrial alpha-glycerol phosphate dehydrogenase (alpha-GPD), are only 0.7-fold and 1.7-fold that of wild-type littermates (TR alpha1+/+). To determine the cause of the disproportionate elevation of D1, TR alpha1+/+ and TR alpha1(PV/+) mice were rendered hypothyroid and then treated with T3. Hypothyroidism decreased hepatic D1, Spot14, and alpha-GPD mRNA to similar levels in TR alpha1+/+ and TR alpha1(PV/+) mice, whereas T3 administration caused an approximately 175-fold elevation of D1 mRNA but only a 3- to 6-fold increases in Spot14 and alpha-GPD mRNAs. Interestingly, the hypothyroidism-induced increase in cerebrocortical type 2 iodothyronine deiodinase activity was 3 times greater in the TR alpha1(PV/+) mice, and these mice had no T3-dependent induction of type 3 iodothyronine deiodinase. Thus, the marked responsiveness of hepatic D1 to T3 relative to other genes, such as Spot14 and alpha-GPD, explains the relatively large effect of the modest increase in serum T3 in the TR alpha1(PV/+) mice, and TR alpha plays a key role in T3-dependent positive and negative regulation of the deiodinases in the cerebral cortex.


Assuntos
Biomarcadores , Iodeto Peroxidase/biossíntese , Iodeto Peroxidase/química , Glândula Tireoide/metabolismo , Animais , Córtex Cerebral/metabolismo , Heterozigoto , Hipotireoidismo , Rim/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Mutação , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiroxina/metabolismo , Fatores de Tempo , Tri-Iodotironina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA