Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922907

RESUMO

Murine models lacking CLOCK/BMAL1 proteins in skeletal muscle (SkM) present muscle deterioration and mitochondria abnormalities. It is unclear whether humans with lower levels of these proteins in the SkM have similar alterations. Here we evaluated the association between BMAL1 and CLOCK protein mass with mitochondrial dynamics parameters and molecular and functional SkM quality markers in males. SkM biopsies were taken from the vastus lateralis of 16 male (non-athletes, non-obese and non-diabetic) subjects (8-9 a.m.). The morphology of mitochondria and their interaction with the sarcoplasmic reticulum (mitochondria-SR) were determined using transmission electron microscopy images. Additionally, protein abundance of the OXPHOS complex, mitochondria fusion/fission regulators, mitophagy and signalling proteins related to muscle protein synthesis were measured. To evaluate the quality of SkM, the cross-sectional area and maximal SkM strength were also measured. The results showed that BMAL1 protein mass was positively associated with mitochondria-SR distance, mitochondria size, mitochondria cristae density and mTOR protein mass. On the other hand, CLOCK protein mass was negatively associated with mitochondria-SR interaction, but positively associated with mitochondria complex III, OPA1 and DRP1 protein mass. Furthermore, CLOCK protein mass was positively associated with the protein synthesis signalling pathway (total mTOR, AKT and P70S6K protein mass) and SkM strength. These findings suggest that the BMAL1 and CLOCK proteins play different roles in regulating mitochondrial dynamics and SkM function in males, and that modulation of these proteins could be a potential therapeutic target for treating muscle diseases. KEY POINTS: In murine models, reductions in BMAL1 and CLOCK proteins lead to changes in mitochondria biology and a decline in muscle function. However, this association has not been explored in humans. We found that in human skeletal muscle, a decrease in BMAL1 protein mass is linked to smaller intermyofibrillar mitochondria, lower mitochondria cristae density, higher interaction between mitochondria and sarcoplasmic reticulum, and reduced mTOR protein mass. Additionally, we found that a decrease in CLOCK protein mass is associated with a higher interaction between mitochondria and sarcoplasmic reticulum, lower protein mass of OPA1 and DRP1, which regulates mitochondria fusion and fission, lower protein synthesis signalling pathway (mTOR, AKT and P70S6K protein mass), and decreased skeletal muscle strength. According to our findings in humans, which are supported by previous studies in animals, the mitochondrial dynamics and skeletal muscle function could be regulated differently by BMAL1 and CLOCK proteins. As a result, targeting the modulation of these proteins could be a potential therapeutic approach for treating muscle diseases and metabolic disorders related to muscle.

2.
Sports Biomech ; : 1-12, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666140

RESUMO

During running, the mechanical energy of the centre of mass of the body (COM) oscillates throughout the step like a spring-mass system, where part of its mechanical energy is stored during negative phases to be released during the following positive phases. This storage-release of energy improves muscle-tendon efficiency, which is related to lower-limb stiffness. This study explores the effect of sports background on the bouncing mechanism, by examining differences in stiffness and step spatiotemporal parameters between swimmers and football athletes. All athletes performed three consecutive running bouts on an instrumented treadmill at three different speeds (3.9, 4.4 and 5.0 m·s-1). The ground reaction forces were recorded. Vertical stiffness and step spatiotemporal parameters were analysed and compared using a two-way ANOVA. Vertical stiffness of football players was on average 21.0 ± 1.1% higher than swimmers. The modification of step spatiotemporal parameters also suggests a more elastic rebound by increasing the stretch of tendons relative to muscle within muscle-tendon units in football players. Compared to swimmers, they (1) decrease the effective contact time by 9.7 ± 2.4% and (2) decrease the duration of the push by 15.0 ± 6.4%, suggesting that background training adaptations influence spring-mass behaviour during running.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA