Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Audiol ; 57(sup1): S28-S41, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29299940

RESUMO

OBJECTIVE: This research assessed the reduction of peak levels, equivalent energy and sound power of firearm suppressors. DESIGN: The first study evaluated the effect of three suppressors at four microphone positions around four firearms. The second study assessed the suppressor-related reduction of sound power with a 3 m hemispherical microphone array for two firearms. RESULTS: The suppressors reduced exposures at the ear between 17 and 24 dB peak sound pressure level and reduced the 8 h equivalent A-weighted energy between 9 and 21 dB depending upon the firearm and ammunition. Noise reductions observed for the instructor's position about a metre behind the shooter were between 20 and 28 dB peak sound pressure level and between 11 and 26 dB LAeq,8h. Firearm suppressors reduced the measured sound power levels between 2 and 23 dB. Sound power reductions were greater for the low-velocity ammunition than for the same firearms fired with high-velocity ammunition due to the effect of N-waves produced by a supersonic bullet. CONCLUSIONS: Firearm suppressors may reduce noise exposure, and the cumulative exposures of suppressed firearms can still present a significant hearing risk. Therefore, firearm users should always wear hearing protection whenever target shooting or hunting.


Assuntos
Armas de Fogo , Perda Auditiva Provocada por Ruído/prevenção & controle , Ruído/prevenção & controle , Exposição Ocupacional/prevenção & controle , Saúde Ocupacional , Acústica/instrumentação , Amplificadores Eletrônicos , Limiar Auditivo , Dispositivos de Proteção das Orelhas , Audição , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Provocada por Ruído/psicologia , Humanos , Movimento (Física) , Ruído/efeitos adversos , Exposição Ocupacional/efeitos adversos , Pressão , Fatores de Proteção , Medição de Risco , Fatores de Risco
2.
Noise Control Eng J ; 63(2): 159-168, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26366038

RESUMO

An experimental-analytical procedure was implemented to reduce the operating noise level of a nail gun, a commonly found power tool in a construction site. The procedure is comprised of preliminary measurements, identification and ranking of major noise sources and application of noise controls. Preliminary measurements show that the impact noise transmitted through the structure and the exhaust related noise were found to be the first and second major contributors. Applying a noise absorbing foam on the outside of the nail gun body was found to be an effective noise reduction technique. One and two-volume small mufflers were designed and applied to the exhaust side of the nail gun which reduced not only the exhaust noise but also the impact noise. It was shown that the overall noise level could be reduced by as much as 3.5 dB, suggesting that significant noise reduction is possible in construction power tools without any significant increase of the cost.

3.
Semin Hear ; 44(4): 485-502, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37818145

RESUMO

The National Institute for Occupational Safety and Health (NIOSH) evaluated continuous and impact noise exposures and hearing loss among workers at a hammer forge company. Full-shift personal noise exposure measurements were collected on forge workers across 15 different job titles; impact noise characteristics and one-third octave band noise levels were assessed at the forge hammers; and 4,750 historic audiometric test records for 483 workers were evaluated for hearing loss trends. Nearly all workers' noise exposures exceeded regulatory and/or recommended exposure limits. Workers working in jobs at or near the hammers had full-shift time-weighted average noise exposures above 100 decibels, A-weighted. Impact noise at the hammers reached up to 148 decibels. Analysis of audiometric test records showed that 82% of workers had experienced a significant threshold shift, as defined by NIOSH, and 63% had experienced a standard threshold shift, as defined by the Occupational Safety and Health Administration (OSHA). All workers with an OSHA standard threshold shift had a preceding NIOSH significant threshold shift which occurred, on average, about 7 years prior. This evaluation highlights forge workers' exposures to high levels of noise, including impact noise, and how their hearing worsened with age and length of employment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA