RESUMO
The identification of novel drug targets is needed to improve the outcomes of heart failure (HF). G-protein-coupled receptors (GPCRs) represent the largest family of targets for already approved drugs, thus providing an opportunity for drug repurposing. Here, we aimed (i) to investigate the differential expressions of 288 cardiac GPCRs via droplet digital PCR (ddPCR) and bulk RNA sequencing (RNAseq) in a rat model of left ventricular pressure-overload; (ii) to compare RNAseq findings with those of ddPCR; and (iii) to screen and test for novel, translatable GPCR drug targets in HF. Male Wistar rats subjected to transverse aortic constriction (TAC, n = 5) showed significant systolic dysfunction vs. sham operated animals (SHAM, n = 5) via echocardiography. In TAC vs. SHAM hearts, RNAseq identified 69, and ddPCR identified 27 significantly differentially expressed GPCR mRNAs, 8 of which were identified using both methods, thus showing a correlation between the two methods. Of these, Prostaglandin-F2α-receptor (Ptgfr) was further investigated and localized on cardiomyocytes and fibroblasts in murine hearts via RNA-Scope. Antagonizing Ptgfr via AL-8810 reverted angiotensin-II-induced cardiomyocyte hypertrophy in vitro. In conclusion, using ddPCR as a novel screening method, we were able to identify GPCR targets in HF. We also show that the antagonism of Ptgfr could be a novel target in HF by alleviating cardiomyocyte hypertrophy.
Assuntos
Insuficiência Cardíaca , Masculino , Ratos , Camundongos , Animais , Ratos Wistar , Insuficiência Cardíaca/genética , Miócitos Cardíacos , Reação em Cadeia da Polimerase , HipertrofiaRESUMO
RATIONALE: Genome editing by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is evolving rapidly. Recently, second-generation CRISPR/Cas9 activation systems based on nuclease inactive dead (d)Cas9 fused to transcriptional transactivation domains were developed for directing specific guide (g)RNAs to regulatory regions of any gene of interest, to enhance transcription. The application of dCas9 to activate cardiomyocyte transcription in targeted genomic loci in vivo has not been demonstrated so far. OBJECTIVE: We aimed to develop a mouse model for cardiomyocyte-specific, CRISPR-mediated transcriptional modulation, and to demonstrate its versatility by targeting Mef2d and Klf15 loci (2 well-characterized genes implicated in cardiac hypertrophy and homeostasis) for enhanced transcription. METHODS AND RESULTS: A mouse model expressing dCas9 with the VPR transcriptional transactivation domains under the control of the Myh (myosin heavy chain) 6 promoter was generated. These mice innocuously expressed dCas9 exclusively in cardiomyocytes. For initial proof-of-concept, we selected Mef2d, which when overexpressed, led to hypertrophy and heart failure, and Klf15, which is lowly expressed in the neonatal heart. The most effective gRNAs were first identified in fibroblast (C3H/10T1/2) and myoblast (C2C12) cell lines. Using an improved triple gRNA expression system (TRISPR [triple gRNA expression construct]), up to 3 different gRNAs were transduced simultaneously to identify optimal conditions for transcriptional activation. For in vivo delivery of the validated gRNA combinations, we employed systemic administration via adeno-associated virus serotype 9. On gRNA delivery targeting Mef2d expression, we recapitulated the anticipated cardiac hypertrophy phenotype. Using gRNA targeting Klf15, we could enhance its transcription significantly, although Klf15 is physiologically silenced at that time point. We further confirmed specific and robust dCas9VPR on-target effects. CONCLUSIONS: The developed mouse model permits enhancement of gene expression by using endogenous regulatory genomic elements. Proof-of-concept in 2 independent genomic loci suggests versatile applications in controlling transcription in cardiomyocytes of the postnatal heart.
Assuntos
Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Miocárdio/metabolismo , Ativação Transcricional , Animais , Linhagem Celular , Dependovirus/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Genes Sintéticos , Vetores Genéticos/genética , Coração/crescimento & desenvolvimento , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição MEF2/biossíntese , Fatores de Transcrição MEF2/genética , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Regiões Promotoras Genéticas , Domínios Proteicos , RNA Polimerase III/genética , RNA Guia de Cinetoplastídeos/genéticaRESUMO
AIMS: The multi-C2 domain protein dysferlin localizes to the T-Tubule system of skeletal and heart muscles. In skeletal muscle, dysferlin is known to play a role in membrane repair and in T-tubule biogenesis and maintenance. Dysferlin deficiency manifests as muscular dystrophy of proximal and distal muscles. Cardiomyopathies have been also reported, and some dysferlinopathy mouse models develop cardiac dysfunction under stress. Generally, the role and functional relevance of dysferlin in the heart is not clear. The aim of this study was to analyse the effect of dysferlin deficiency on the transverse-axial tubule system (TATS) structure and on Ca2+ homeostasis in the heart. METHODS AND RESULTS: We studied dysferlin localization in rat and mouse cardiomyocytes by immunofluorescence microscopy. In dysferlin-deficient ventricular mouse cardiomyocytes, we analysed the TATS by live staining and assessed Ca2+ handling by patch-clamp experiments and measurement of Ca2+ transients and Ca2+ sparks. We found increasing co-localization of dysferlin with the L-type Ca2+-channel during TATS development and show that dysferlin deficiency leads to pathological loss of transversal and increase in longitudinal elements (axialization). We detected reduced L-type Ca2+-current (ICa,L) in cardiomyocytes from dysferlin-deficient mice and increased frequency of spontaneous sarcoplasmic reticulum Ca2+ release events resulting in pro-arrhythmic contractions. Moreover, cardiomyocytes from dysferlin-deficient mice showed an impaired response to ß-adrenergic receptor stimulation. CONCLUSIONS: Dysferlin is required for TATS biogenesis and maintenance in the heart by controlling the ratio of transversal and axial membrane elements. Absence of dysferlin leads to defects in Ca2+ homeostasis which may contribute to contractile heart dysfunction in dysferlinopathy patients.
Assuntos
Cálcio , Acoplamento Excitação-Contração , Animais , Disferlina/genética , Camundongos , Miócitos Cardíacos , Ratos , Retículo SarcoplasmáticoRESUMO
Chromatin remodelling precedes transcriptional and structural changes in heart failure. A body of work suggests roles for the developmental Wnt signalling pathway in cardiac remodelling. Hitherto, there is no evidence supporting a direct role of Wnt nuclear components in regulating chromatin landscapes in this process. We show that transcriptionally active, nuclear, phosphorylated(p)Ser675-ß-catenin and TCF7L2 are upregulated in diseased murine and human cardiac ventricles. We report that inducible cardiomyocytes (CM)-specific pSer675-ß-catenin accumulation mimics the disease situation by triggering TCF7L2 expression. This enhances active chromatin, characterized by increased H3K27ac and TCF7L2 occupancies to cardiac developmental and remodelling genes in vivo. Accordingly, transcriptomic analysis of ß-catenin stabilized hearts shows a strong recapitulation of cardiac developmental processes like cell cycling and cytoskeletal remodelling. Mechanistically, TCF7L2 co-occupies distal genomic regions with cardiac transcription factors NKX2-5 and GATA4 in stabilized-ß-catenin hearts. Validation assays revealed a previously unrecognized function of GATA4 as a cardiac repressor of the TCF7L2/ß-catenin complex in vivo, thereby defining a transcriptional switch controlling disease progression. Conversely, preventing ß-catenin activation post-pressure-overload results in a downregulation of these novel TCF7L2-targets and rescues cardiac function. Thus, we present a novel role for TCF7L2/ß-catenin in CMs-specific chromatin modulation, which could be exploited for manipulating the ubiquitous Wnt pathway.
Assuntos
Cromatina/genética , Fator de Transcrição GATA4/genética , Insuficiência Cardíaca/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , beta Catenina/genética , Adulto , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Progressão da Doença , Fator de Transcrição GATA4/metabolismo , Perfilação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Ligação Proteica , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismoRESUMO
The multiphasic regulation of the Wnt/ß-catenin canonical pathway is essential for cardiogenesis in vivo and in vitro. To achieve tight regulation of the Wnt/ß-catenin signaling, tissue- and cell-specific coactivators and repressors need to be recruited. The identification of such factors may help to elucidate mechanisms leading to enhanced cardiac differentiation efficiency in vitro as well as promote regeneration in vivo. Using a yeast-two-hybrid screen, we identified four-and-a-half-LIM-domain 2 (FHL2) as a cardiac-specific ß-catenin interaction partner and activator of Wnt/ß-catenin-dependent transcription. We analyzed the role of this interaction for early cardiogenesis in an in vitro model by making use of embryoid body cultures from mouse embryonic stem cells (ESCs). In this model, stable FHL2 gain-of-function promoted mesodermal cell formation and cell proliferation while arresting cardiac differentiation in an early cardiogenic mesodermal progenitor state. Mechanistically, FHL2 overexpression enhanced nuclear accumulation of ß-catenin and activated Wnt/ß-catenin-dependent transcription leading to sustained upregulation of the early cardiogenic gene Igfbp5. In an alternative P19 cell model, transient FHL2 overexpression led to early activation of Wnt/ß-catenin-dependent transcription, but not sustained high-level of Igfbp5 expression. This resulted in enhanced cardiogenesis. We propose that early Wnt/ß-catenin-dependent transcriptional activation mediated by FHL2 is important for the transition to and expansion of early cardiogenic mesodermal cells. Collectively, our findings offer mechanistic insight into the early cardiogenic code and may be further exploited to enhance cardiac progenitor cell activity in vitro and in vivo.
Assuntos
Células-Tronco Embrionárias/fisiologia , Proteínas com Homeodomínio LIM/genética , Proteínas Musculares/genética , Miócitos Cardíacos/citologia , Fatores de Transcrição/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Musculares/metabolismo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transfecção , beta Catenina/biossíntese , beta Catenina/metabolismoRESUMO
The fluorescence ubiquitination cell cycle inhibitor (FUCCI) has been introduced to monitor cell cycle activity in living cells, including human induced pluripotent stem cells (hiPSC) and derived cell types. We have recently developed hiPSC with stable expression of dCas9VPR for endogenous gene activation and a Citrine-tagged ACTN2 cell line to monitor sarcomere development and function in muscle cells. Here, we present dual and triple transgenic hiPSC lines developed by genomic integration of FUCCI with and without dCas9VPR into the ROSA26 and AAVS1 loci, respectively, in the previously introduced ACTN2-Citrine line. Functionality of the transgenes was demonstrated in the novel hiPSC line, which we introduce as Myo-CCER and CraCCER.
Assuntos
Ciclo Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Linhagem CelularRESUMO
Gene variants in LZTR1 are implicated to cause Noonan syndrome associated with a severe and early-onset hypertrophic cardiomyopathy. Mechanistically, LZTR1 deficiency results in accumulation of RAS GTPases and, as a consequence, in RAS-MAPK signaling hyperactivity, thereby causing the Noonan syndrome-associated phenotype. Despite its epidemiological relevance, pharmacological as well as invasive therapies remain limited. Here, personalized CRISPR-Cas9 gene therapies might offer a novel alternative for a curative treatment in this patient cohort. In this study, by utilizing a patient-specific screening platform based on iPSC-derived cardiomyocytes from two Noonan syndrome patients, we evaluated different clinically translatable therapeutic approaches using small Cas9 orthologs targeting a deep-intronic LZTR1 variant to cure the disease-associated molecular pathology. Despite high editing efficiencies in cardiomyocyte cultures transduced with lentivirus or all-in-one adeno-associated viruses, we observed crucial differences in editing outcomes in proliferative iPSCs vs. non-proliferative cardiomyocytes. While editing in iPSCs rescued the phenotype, the same editing approaches did not robustly restore LZTR1 function in cardiomyocytes, indicating critical differences in the activity of DNA double-strand break repair mechanisms between proliferative and non-proliferative cell types and highlighting the importance of cell type-specific screens for testing CRISPR-Cas9 gene therapies.
RESUMO
"Medical scientists" are postgraduate investigators who are engaged in biomedical research, and either hold a biomedical PhD or are qualified in medicine but do not participate in patient care. Medical scientists constitute ~40% of staff at medical faculties and >90% at nonuniversity medical research institutions in Germany. However, medical scientists in Germany face limited long-term career prospects and a lack of dedicated training and support programmes. They also face time limits on their career progression arising from national academic employment legislation, and imminent reforms by the German government are likely to make this worse. Nevertheless, recent developments in the educational landscape including the introduction of increasingly focused MSc, pre-PhD, and doctoral programmes to train medically aware basic scientists, as well as improved general recognition of the roles and relevance of medical scientists in health research, are encouraging. Physiologists have taken essential steps to improve the recognition of medical scientists in Germany by introducing a "specialist physiologist" qualification; this initiative could be applied to support medical scientists in other fields and countries. In this review, we describe the particular challenges facing medical scientists in Germany and make recommendations that may apply to other academic systems.
Assuntos
Pesquisa Biomédica , Fisiologia , Alemanha , Humanos , Fisiologia/educação , PesquisadoresRESUMO
AIMS: Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation is valuable for developmental biology and regenerative medicine. METHODS AND RESULTS: Here, we show that chemical modulation of histone acetyl transferases (by IQ-1) and WNT (by CHIR99021) synergistically enables the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules, removal SCPs resume proliferation and concomitant NKX2-5 up-regulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNA-sequencing-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field of mouse hearts, hallmarked by nuclear receptor sub-family 2 group F member 2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated retinoic acid and BMP signalling is governing SCP transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behaviour. CONCLUSION: The chemically defined and reversible nature of our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.
Assuntos
Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nkx-2.5 , Miócitos Cardíacos , Piridinas , Pirimidinas , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/enzimologia , Proteína Homeobox Nkx-2.5/metabolismo , Proteína Homeobox Nkx-2.5/genética , Pirimidinas/farmacologia , Piridinas/farmacologia , Animais , Linhagem da Célula , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/enzimologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Fenótipo , Via de Sinalização Wnt , Coração , Fatores de Tempo , Camundongos , Miócitos de Músculo Liso/metabolismo , Análise de Célula ÚnicaRESUMO
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (ß-catΔex3) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of ß-catΔex3 mice. A proteomic analysis of in vivo cardiac derived EVs from ß-catΔex3 hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future.
Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Camundongos , Humanos , Animais , Miócitos Cardíacos/metabolismo , Proteostase , Proteômica , Transcriptoma , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Perfilação da Expressão GênicaRESUMO
Endogenous gene activation by programmable transcription factors offers gene-dose-dependent phenotyping of target cells embedded in their in vivo natural tissue environment. Modified CRISPR/Cas9 systems were developed to be used as guide (g) RNA programmable transcriptional activation platforms (CRISPRa) in vitro and in vivo allowing targeted or multiplexed gene activation studies. We specifically developed these tools to be applied in cardiomyocytes providing dCas9VPR expressing mice under the control of the Myosin heavy chain 6 (Myh6) promoter. Here, we describe a protocol for the efficient design and validation of newly identified gRNA for enhancing transcriptional activity of a selected gene of interest. Additionally, we are providing insights into a downstream application in a dCas9VPR expressing mouse model specifically for cardiomyocyte biology.
Assuntos
Sistemas CRISPR-Cas , Miócitos Cardíacos , Animais , Sistemas CRISPR-Cas/genética , Camundongos , RNA Guia de Cinetoplastídeos/genética , Fatores de Transcrição/genética , Ativação TranscricionalRESUMO
We analyzed the effect of conditional, alphaMHC-dependent genetic beta-catenin depletion and stabilization on cardiac remodeling following experimental infarct. beta-Catenin depletion significantly improved 4-week survival and left ventricular (LV) function (fractional shortening: CT(Deltaex3-6): 24 +/- 1.9%; beta-cat(Deltaex3-6): 30.2 +/- 1.6%, P < 0.001). beta-Catenin stabilization had opposite effects. No significant changes in adult cardiomyocyte survival or hypertrophy were observed in either transgenic line. Associated with the functional improvement, LV scar cellularity was altered: beta-catenin-depleted mice showed a marked subendocardial and subepicardial layer of small cTnT(pos) cardiomyocytes associated with increased expression of cardiac lineage markers Tbx5 and GATA4. Using a Cre-dependent lacZ reporter gene, we identified a noncardiomyocyte cell population affected by alphaMHC-driven gene recombination localized to these tissue compartments at baseline. These cells were found to be cardiac progenitor cells since they coexpressed markers of proliferation (Ki67) and the cardiomyocyte lineage (alphaMHC, GATA4, Tbx5) but not cardiac Troponin T (cTnT). The cell population overlaps in part with both the previously described c-kit(pos) and stem cell antigen-1 (Sca-1)(pos) precursor cell population but not with the Islet-1(pos) precursor cell pool. An in vitro coculture assay of highly enriched (>95%) Sca-1(pos) cardiac precursor cells from beta-catenin-depleted mice compared to cells isolated from control littermate demonstrated increased differentiation toward alpha-actin(pos) and cTnT(pos) cardiomyocytes after 10 days (CT(Deltaex3-6): 38.0 +/- 1.0% alpha-actin(pos); beta-cat(Deltaex3-6): 49.9 +/- 2.4% alpha-actin(pos), P < 0.001). We conclude that beta-catenin depletion attenuates postinfarct LV remodeling in part through increased differentiation of GATA4(pos)/Sca-1(pos) resident cardiac progenitor cells.
Assuntos
Mioblastos Cardíacos/fisiologia , Infarto do Miocárdio/metabolismo , Regeneração , Remodelação Ventricular , beta Catenina/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células , Regulação para Baixo , Genes Reporter , Camundongos , Camundongos Transgênicos , Mioblastos Cardíacos/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Regeneração/genética , Remodelação Ventricular/genética , beta Catenina/genética , beta-Galactosidase/genéticaRESUMO
The Rho guanine nucleotide exchange factor RhoGEF17 was described to reside in adherens junctions (AJ) in endothelial cells (EC) and to play a critical role in the regulation of cell adhesion and barrier function. The purpose of this study was to analyze signal cascades and processes occurring subsequent to AJ disruption induced by RhoGEF17 knockdown. Primary human and immortalized rat EC were used to demonstrate that an adenoviral-mediated knockdown of RhoGEF17 resulted in cell rounding and an impairment in spheroid formation due to an enhanced proteasomal degradation of AJ components. In contrast, ß-catenin degradation was impaired, which resulted in an induction of the ß-catenin-target genes cyclin D1 and survivin. RhoGEF17 depletion additionally inhibited cell adhesion and sheet migration. The RhoGEF17 knockdown prevented the cells with impeded cell-cell and cell-matrix contacts from apoptosis, which was in line with a reduction in pro-caspase 3 expression and an increase in Akt phosphorylation. Nevertheless, the cells were not able to proliferate as a cell cycle block occurred. In summary, we demonstrate that a loss of RhoGEF17 disturbs cell-cell and cell-substrate interaction in EC. Moreover, it prevents the EC from cell death and blocks cell proliferation. Non-canonical ß-catenin signaling and Akt activation could be identified as a potential mechanism.
Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Junções Aderentes/metabolismo , Animais , Apoptose , Adesão Celular , Pontos de Checagem do Ciclo Celular , Morte Celular , Movimento Celular , Proliferação de Células , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Modelos Biológicos , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ratos , beta Catenina/metabolismoRESUMO
Cardiomyocyte (CM) replacement is very slow in adult mammalian hearts, preventing regeneration of damaged myocardium. By contrast, fetal hearts display considerable regenerative potential owing to the presence of less mature CMs that still have the ability to proliferate. In this study, we demonstrate that heart-specific expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) induces adult CMs to dedifferentiate, conferring regenerative capacity to adult hearts. Transient, CM-specific expression of OSKM extends the regenerative window for postnatal mouse hearts and induces a gene expression program in adult CMs that resembles that of fetal CMs. Extended expression of OSKM in CMs leads to cellular reprogramming and heart tumor formation. Short-term OSKM expression before and during myocardial infarction ameliorates myocardial damage and improves cardiac function, demonstrating that temporally controlled dedifferentiation and reprogramming enable cell cycle reentry of mammalian CMs and facilitate heart regeneration.
Assuntos
Reprogramação Celular , Coração/fisiologia , Miócitos Cardíacos/citologia , Regeneração , Actinas/genética , Actinas/metabolismo , Animais , Desdiferenciação Celular , Proliferação de Células , Doxiciclina/farmacologia , Expressão Gênica , Coração/embriologia , Neoplasias Cardíacas/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Mitose , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismoRESUMO
AIMS: Arrhythmias and sudden cardiac death (SCD) occur commonly in patients with heart failure. We found T-box 5 (TBX5) dysregulated in ventricular myocardium from heart failure patients and thus we hypothesized that TBX5 reduction contributes to arrhythmia development in these patients. To understand the underlying mechanisms, we aimed to reveal the ventricular TBX5-dependent transcriptional network and further test the therapeutic potential of TBX5 level normalization in mice with documented arrhythmias. METHODS AND RESULTS: We used a mouse model of TBX5 conditional deletion in ventricular cardiomyocytes. Ventricular (v) TBX5 loss in mice resulted in mild cardiac dysfunction and arrhythmias and was associated with a high mortality rate (60%) due to SCD. Upon angiotensin stimulation, vTbx5KO mice showed exacerbated cardiac remodelling and dysfunction suggesting a cardioprotective role of TBX5. RNA-sequencing of a ventricular-specific TBX5KO mouse and TBX5 chromatin immunoprecipitation was used to dissect TBX5 transcriptional network in cardiac ventricular tissue. Overall, we identified 47 transcripts expressed under the control of TBX5, which may have contributed to the fatal arrhythmias in vTbx5KO mice. These included transcripts encoding for proteins implicated in cardiac conduction and contraction (Gja1, Kcnj5, Kcng2, Cacna1g, Chrm2), in cytoskeleton organization (Fstl4, Pdlim4, Emilin2, Cmya5), and cardiac protection upon stress (Fhl2, Gpr22, Fgf16). Interestingly, after TBX5 loss and arrhythmia development in vTbx5KO mice, TBX5 protein-level normalization by systemic adeno-associated-virus (AAV) 9 application, re-established TBX5-dependent transcriptome. Consequently, cardiac dysfunction was ameliorated and the propensity of arrhythmia occurrence was reduced. CONCLUSIONS: This study uncovers a novel cardioprotective role of TBX5 in the adult heart and provides preclinical evidence for the therapeutic value of TBX5 protein normalization in the control of arrhythmia.
Assuntos
Arritmias Cardíacas/prevenção & controle , Morte Súbita Cardíaca/prevenção & controle , Ventrículos do Coração/metabolismo , Hipertrofia Ventricular Esquerda/terapia , Proteínas com Domínio T/metabolismo , Disfunção Ventricular Esquerda/terapia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Sequenciamento de Cromatina por Imunoprecipitação , Morte Súbita Cardíaca/etiologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Terapia Genética , Frequência Cardíaca , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Preparação de Coração Isolado , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq , Proteínas com Domínio T/genética , Transcrição Gênica , Transcriptoma , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda , Remodelação VentricularRESUMO
INTRODUCTION: Ensuring scientific reproducibility and compliance with documentation guidelines of funding bodies and journals is a topic of greatly increasing importance in biomedical research. Failure to comply, or unawareness of documentation standards can have adverse effects on the translation of research into patient treatments, as well as economic implications. In the context of the German Research Foundation-funded collaborative research center (CRC) 1002, an IT-infrastructure sub-project was designed. Its goal has been to establish standardized metadata documentation and information exchange benefitting the participating research groups with minimal additional documentation efforts. METHODS: Implementation of the self-developed menoci-based research data platform (RDP) was driven by close communication and collaboration with researchers as early adopters and experts. Requirements analysis and concept development involved in person observation of experimental procedures, interviews and collaboration with researchers and experts, as well as the investigation of available and applicable metadata standards and tools. The Drupal-based RDP features distinct modules for the different documented data and workflow types, and both the development and the types of collected metadata were continuously reviewed and evaluated with the early adopters. RESULTS: The menoci-based RDP allows for standardized documentation, sharing and cross-referencing of different data types, workflows, and scientific publications. Different modules have been implemented for specific data types and workflows, allowing for the enrichment of entries with specific metadata and linking to further relevant entries in different modules. DISCUSSION: Taking the workflows and datasets of the frequently involved experimental service projects as a starting point for (meta-)data types to overcome irreproducibility of research data, results in increased benefits for researchers with minimized efforts. While the menoci-based RDP with its data models and metadata schema was originally developed in a cardiological context, it has been implemented and extended to other consortia at GÃuttingen Campus and beyond in different life science research areas.
Assuntos
Pesquisa Biomédica , Metadados , Documentação , Humanos , Reprodutibilidade dos Testes , Fluxo de TrabalhoRESUMO
Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell proliferation in the niche and account for asymmetric organogenesis. Subtle variations in this or related regulatory networks may explain the different regenerative capacities of various organs and animal species.
Assuntos
Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Incisivo/crescimento & desenvolvimento , Modelos Biológicos , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Ativinas/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Folistatina/metabolismo , Hibridização In Situ , Incisivo/citologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais/genética , Técnicas de Cultura de TecidosRESUMO
Cardiomyocyte and stroma cell cross-talk is essential for the formation of collagen-based engineered heart muscle, including engineered human myocardium (EHM). Fibroblasts are a main component of the myocardial stroma. We hypothesize that fibroblasts, by compacting the surrounding collagen network, support the self-organization of cardiomyocytes into a functional syncytium. With a focus on early self-organization processes in EHM, we studied the molecular and biophysical adaptations mediated by defined populations of fibroblasts and embryonic stem cell-derived cardiomyocytes in a collagen type I hydrogel. After a short phase of cell-independent collagen gelation (30â¯min), tissue compaction was progressively mediated by fibroblasts. Fibroblast-mediated tissue stiffening was attenuated in the presence of cardiomyocytes allowing for the assembly of stably contracting, force-generating EHM within 4 weeks. Comparative RNA-sequencing data corroborated that fibroblasts are particularly sensitive to the tissue compaction process, resulting in the fast activation of transcription profiles, supporting heart muscle development and extracellular matrix synthesis. Large amplitude oscillatory shear (LAOS) measurements revealed nonlinear strain stiffening at physiological strain amplitudes (>2%), which was reduced in the presence of cells. The nonlinear stress-strain response could be characterized by a mathematical model. Collectively, our study defines the interplay between fibroblasts and cardiomyocytes during human heart muscle self-organization in vitro and underscores the relevance of fibroblasts in the biological engineering of a cardiomyogenesis-supporting viscoelastic stroma. We anticipate that the established mathematical model will facilitate future attempts to optimize EHM for in vitro (disease modelling) and in vivo applications (heart repair).
Assuntos
Engenharia Celular , Elasticidade , Fibroblastos/citologia , Miócitos Cardíacos/citologia , Fenômenos Biomecânicos , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Estresse Mecânico , ViscosidadeRESUMO
BACKGROUND: The combination of cardiomyocyte (CM) and vascular cell (VC) fetal reprogramming upon stress culminates in end-stage heart failure (HF) by mechanisms that are not fully understood. Previous studies suggest KLF15 as a key regulator of CM hypertrophy. OBJECTIVES: This study aimed to characterize the impact of KLF15-dependent cardiac transcriptional networks leading to HF progression, amenable to therapeutic intervention in the adult heart. METHODS: Transcriptomic bioinformatics, phenotyping of Klf15 knockout mice, Wnt-signaling-modulated hearts, and pressure overload and myocardial ischemia models were applied. Human KLF15 knockout embryonic stem cells and engineered human myocardium, and human samples were used to validate the relevance of the identified mechanisms. RESULTS: The authors identified a sequential, postnatal transcriptional repression mediated by KLF15 of pathways implicated in pathological tissue remodeling, including distinct Wnt-pathways that control CM fetal reprogramming and VC remodeling. The authors further uncovered a vascular program induced by a cellular crosstalk initiated by CM, characterized by a reduction of KLF15 and a concomitant activation of Wnt-dependent transcriptional signaling. Within this program, a so-far uncharacterized cardiac player, SHISA3, primarily expressed in VCs in fetal hearts and pathological remodeling was identified. Importantly, the KLF15 and Wnt codependent SHISA3 regulation was demonstrated to be conserved in mouse and human models. CONCLUSIONS: The authors unraveled a network interplay defined by KLF15-Wnt dynamics controlling CM and VC homeostasis in the postnatal heart and demonstrated its potential as a cardiac-specific therapeutic target in HF. Within this network, they identified SHISA3 as a novel, evolutionarily conserved VC marker involved in pathological remodeling in HF.