Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564184

RESUMO

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Assuntos
Hormônios Hipotalâmicos , Privação do Sono , Ratos , Masculino , Humanos , Animais , Hormônio Liberador de Prolactina/farmacologia , Hormônio Liberador de Prolactina/metabolismo , Privação do Sono/metabolismo , Transtornos do Humor/etiologia , Qualidade de Vida , Ratos Wistar , Hormônios Hipotalâmicos/metabolismo , Sono/fisiologia , Neurônios/fisiologia , Norepinefrina/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558223

RESUMO

The perception of and response to danger is critical for an individual's survival and is encoded by subcortical neurocircuits. The amygdaloid complex is the primary neuronal site that initiates bodily reactions upon external threat with local-circuit interneurons scaling output to effector pathways. Here, we categorize central amygdala neurons that express secretagogin (Scgn), a Ca2+-sensor protein, as a subset of protein kinase Cδ (PKCδ)+ interneurons, likely "off cells." Chemogenetic inactivation of Scgn+/PKCδ+ cells augmented conditioned response to perceived danger in vivo. While Ca2+-sensor proteins are typically implicated in shaping neurotransmitter release presynaptically, Scgn instead localized to postsynaptic compartments. Characterizing its role in the postsynapse, we found that Scgn regulates the cell-surface availability of NMDA receptor 2B subunits (GluN2B) with its genetic deletion leading to reduced cell membrane delivery of GluN2B, at least in vitro. Conclusively, we describe a select cell population, which gates danger avoidance behavior with secretagogin being both a selective marker and regulatory protein in their excitatory postsynaptic machinery.


Assuntos
Tonsila do Cerebelo/metabolismo , Interneurônios/metabolismo , Proteína Quinase C-delta/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Secretagoginas/metabolismo , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Aprendizagem da Esquiva , Linhagem Celular Tumoral , Células Cultivadas , Medo , Feminino , Humanos , Interneurônios/fisiologia , Masculino , Transporte Proteico , Ratos , Ratos Wistar , Secretagoginas/genética , Potenciais Sinápticos
3.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673899

RESUMO

According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very little is known about its role in the MRR. To address that, we first confirmed the presence of dopaminergic cells in the MRR of mice (immunohistochemistry, RT-PCR), and then also in humans (RT-PCR) using healthy donor samples to prove translational relevance. Next, we used chemogenetic technology in mice containing the Cre enzyme under the promoter of the dopamine transporter. With the help of an adeno-associated virus, designer receptors exclusively activated by designer drugs (DREADDs) were expressed in the dopaminergic cells of the MRR to manipulate their activity. Four weeks later, we performed an extensive behavioral characterization 30 min after the injection of the artificial ligand (Clozapine-N-Oxide). Stimulation of the dopaminergic cells in the MRR decreased social interest without influencing aggression and with an increase in social discrimination. Additionally, inhibition of the same cells increased the friendly social behavior during social interaction test. No behavioral changes were detected in anxiety, memory or locomotion. All in all, dopaminergic cells were present in both the mouse and human samples from the MRR, and the manipulation of the dopaminergic neurons in the MRR elicited a specific social response.


Assuntos
Clozapina/análogos & derivados , Neurônios Dopaminérgicos , Comportamento Social , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Humanos , Clozapina/farmacologia , Núcleos da Rafe/metabolismo , Comportamento Animal , Dopamina/metabolismo , Camundongos Endogâmicos C57BL
4.
J Neurosci ; 41(9): 1982-1995, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33468566

RESUMO

Excessive fear learning and generalized, extinction-resistant fear memories are core symptoms of anxiety and trauma-related disorders. Despite significant evidence from clinical studies reporting hyperactivity of the bed nucleus of stria terminalis (BNST) under these conditions, the role of BNST in fear learning and expression is still not clarified. Here, we tested how BNST modulates fear learning in male mice using a chemogenetic approach. Activation of GABAergic neurons of BNST during fear conditioning or memory consolidation resulted in enhanced cue-related fear recall. Importantly, BNST activation had no acute impact on fear expression during conditioning or recalls, but it enhanced cue-related fear recall subsequently, potentially via altered activity of downstream regions. Enhanced fear memory consolidation could be replicated by selectively activating somatostatin (SOM), but not corticotropin-releasing factor (CRF), neurons of the BNST, which was accompanied by increased fear generalization. Our findings suggest the significant modulation of fear memory strength by specific circuits of the BNST.SIGNIFICANCE STATEMENT The bed nucleus of stria terminalis (BNST) mediates different defensive behaviors, and its connections implicate its integrative modulatory role in fear memory formation; however, the involvement of BNST in fear learning has yet to be elucidated in detail. Our data highlight that BNST stimulation enhances fear memory formation without direct effects on fear expression. Our study identified somatostatin (SOM) cells within the extended amygdala as specific neurons promoting fear memory formation. These data underline the importance of anxiety circuits in maladaptive fear memory formation, indicating elevated BNST activity as a potential vulnerability factor to anxiety and trauma-related disorders.


Assuntos
Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Neurônios/fisiologia , Núcleos Septais/fisiologia , Animais , Medo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Somatostatina/metabolismo
5.
J Psychiatry Neurosci ; 47(3): E162-E175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508327

RESUMO

BACKGROUND: Transient receptor potential ankyrin 1 (TRPA1), a cation channel, is expressed predominantly in primary sensory neurons, but its central distribution and role in mood control are not well understood. We investigated whether TRPA1 is expressed in the urocortin 1 (UCN1)-immunoreactive centrally projecting Edinger-Westphal nucleus (EWcp), and we hypothesized that chronic variable mild stress (CVMS) would reduce its expression in mice. We anticipated that TRPA1 mRNA would be present in the human EWcp, and that it would be downregulated in people who died by suicide. METHODS: We exposed Trpa1 knockout and wild-type mice to CVMS or no-stress control conditions. We then performed behavioural tests for depression and anxiety, and we evaluated physical and endocrinological parameters of stress. We assessed EWcp Trpa1 and Ucn1 mRNA expression, as well as UCN1 peptide content, using RNA-scope in situ hybridization and immunofluorescence. We tested human EWcp samples for TRPA1 using reverse transcription polymerase chain reaction. RESULTS: Trpa1 mRNA was colocalized with EWcp/UCN1 neurons. Non-stressed Trpa1 knockout mice expressed higher levels of Ucn1 mRNA, had less body weight gain and showed greater immobility in the forced swim test than wild-type mice. CVMS downregulated EWcp/Trpa1 expression and increased immobility in the forced swim test only in wild-type mice. We confirmed that TRPA1 mRNA expression was downregulated in the human EWcp in people who died by suicide. LIMITATIONS: Developmental compensations and the global lack of TRPA1 may have influenced our findings. Because experimental data came from male brains only, we have no evidence for whether findings would be similar in female brains. Because a TRPA1-specific antibody is lacking, we have provided mRNA data only. Limited access to high-quality human tissues restricted sample size. CONCLUSION: TRPA1 in EWcp/UCN1 neurons might contribute to the regulation of depression-like behaviour and stress adaptation response in mice. In humans, TRPA1 might contribute to mood control via EWcp/UCN1 neurons.


Assuntos
Núcleo de Edinger-Westphal , Suicídio , Animais , Núcleo de Edinger-Westphal/metabolismo , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Urocortinas/metabolismo
6.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555107

RESUMO

Normal biological rhythms, including sleep, are very important for a healthy life and their disturbance may induce-among other issues-memory impairment, which is a key problem of many psychiatric pathologies. The major brain center of circadian regulation is the suprachiasmatic nucleus, and vasopressin (AVP), which is one of its main neurotransmitters, also plays a key role in memory formation. In this review paper, we aimed to summarize our knowledge on the vasopressinergic connection between sleep and memory with the help of the AVP-deficient Brattleboro rat strain. These animals have EEG disturbances with reduced sleep and impaired memory-boosting theta oscillation and show memory impairment in parallel. Based upon human and animal data measuring AVP levels, haplotypes, and the administration of AVP or its agonist or antagonist via different routes (subcutaneous, intraperitoneal, intracerebroventricular, or intranasal), V1a receptors (especially of hippocampal origin) were implicated in the sleep-memory interaction. All in all, the presented data confirm the possible connective role of AVP between biological rhythms and memory formation, thus, supporting the importance of AVP in several psychopathological conditions.


Assuntos
Arginina Vasopressina , Vasopressinas , Ratos , Animais , Humanos , Arginina Vasopressina/metabolismo , Ratos Brattleboro , Encéfalo/metabolismo , Núcleo Supraquiasmático/metabolismo , Sono , Ritmo Circadiano/fisiologia
7.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054976

RESUMO

Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other "classical" neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Células Piramidais/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Animais , Biomarcadores , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos Knockout , Neurotransmissores/metabolismo , Transdução de Sinais , Transmissão Sináptica
8.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163282

RESUMO

The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo , Hormônio Adrenocorticotrópico/genética , Animais , Núcleo Basal de Meynert/metabolismo , Encéfalo/metabolismo , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Brattleboro , Comportamento Social , Vasopressinas/fisiologia
9.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142737

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Approximately 50% of AD patients show anxiety and depressive symptoms, which may contribute to cognitive decline. We aimed to investigate whether the triple-transgenic mouse (3xTg-AD) is a good preclinical model of this co-morbidity. The characteristic histological hallmarks are known to appear around 6-month; thus, 4- and 8-month-old male mice were compared with age-matched controls. A behavioral test battery was used to examine anxiety- (open field (OF), elevated plus maze, light-dark box, novelty suppressed feeding, and social interaction (SI) tests), and depression-like symptoms (forced swim test, tail suspension test, sucrose preference test, splash test, and learned helplessness) as well as the cognitive decline (Morris water maze (MWM) and social discrimination (SD) tests). Acetylcholinesterase histochemistry visualized cholinergic fibers in the cortex. Dexamethasone-test evaluated the glucocorticoid non-suppression. In the MWM, the 3xTg-AD mice found the platform later than controls in the 8-month-old cohort. The SD abilities of the 3xTg-AD mice were missing at both ages. In OF, both age groups of 3xTg-AD mice moved significantly less than the controls. During SI, 8-month-old 3xTg-AD animals spent less time with friendly social behavior than the controls. In the splash test, 3xTg-AD mice groomed themselves significantly less than controls of both ages. Cortical fiber density was lower in 8-month-old 3xTg-AD mice compared to the control. Dexamethasone non-suppression was detectable in the 4-month-old group. All in all, some anxiety- and depressive-like symptoms were present in 3xTg-AD mice. Although this strain was not generally more anxious or depressed, some aspects of comorbidity might be studied in selected tests, which may help to develop new possible treatments.


Assuntos
Doença de Alzheimer , Acetilcolinesterase , Doença de Alzheimer/patologia , Animais , Ansiedade/patologia , Dexametasona , Modelos Animais de Doenças , Glucocorticoides , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sacarose , Proteínas tau
10.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502322

RESUMO

Vasopressin is a ubiquitous molecule playing an important role in a wide range of physiological processes thereby implicated in the pathomechanism of many disorders. Its effect is well characterized through V2 receptors, which regulates the water resorption in kidney, while its vasoconstrictory effect through V1a receptor also received a lot of attention in the maintenance of blood pressure during shock. However, the most striking is its central effect both through the V1b receptors in stress-axis regulation as well as through V1a receptors regulating many aspects of our behavior (e.g., social behavior, learning and memory). Vasopressin has been implicated in the development of depression, due to its connection with chronic stress, as well as schizophrenia because of its involvement in social interactions and memory processes. Epigenetic changes may also play a role in the development of these disorders. The possible mechanism includes DNA methylation, histone modification and/or micro RNAs, and these possible regulations will be in the focus of our present review.


Assuntos
Epigênese Genética , Homeostase , Transtornos Mentais/patologia , Receptores de Vasopressinas/metabolismo , Vasopressinas/metabolismo , Animais , Humanos , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Receptores de Vasopressinas/genética , Transdução de Sinais , Vasopressinas/genética
11.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445795

RESUMO

Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore, of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic-pituitary-adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured by the enormous bidirectional connection between their centers, the paraventricular nucleus of the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the centrum of stress regulation. However, the brainstem seems to be equally important. Therefore, we aimed to summarize the present knowledge on the role of classical neurotransmitters of the brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress adaptation. Neuropeptides, including CRH, might be co-localized in the brainstem nuclei. Here we focused on CRH as its role in stress regulation is well-known and widely accepted and other CRH neurons scattered along the brain may also complement the function of the PVN. Although CRH-positive cells are present on some parts of the brainstem, sometimes even in comparable amounts as in the PVN, not much is known about their contribution to stress adaptation. Based on the role of the Barrington's nucleus in micturition and the inferior olivary complex in the regulation of fine motoric-as the main CRH-containing brainstem areas-we might assume that these areas regulate stress-induced urination and locomotion, respectively. Further studies are necessary for the field.


Assuntos
Adaptação Fisiológica/fisiologia , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Estresse Fisiológico/fisiologia , Animais , Humanos , Neurônios/metabolismo , Neurônios/fisiologia
12.
Stress ; 23(6): 732-745, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33043781

RESUMO

Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition with a wide range of behavioral disturbances and serious consequences for both patient and society. One of the main reasons for unsuccessful therapies is insufficient knowledge about its underlying pathomechanism. In the search for centrally signaling molecules that might be relevant to the development of PTSD we focus here on arginine vasopressin (AVP). So far AVP has not been strongly implicated in PTSD, but different lines of evidence suggest a possible impact of its signaling in all clusters of PTSD symptomatology. More specifically, in laboratory rodents, AVP agonists affect behavior in a PTSD-like manner, while significant reduction of AVP signaling in the brain e.g. in AVP-deficient Brattleboro rats, ameliorated defined behavioral parameters that can be linked to PTSD symptoms. Different animal models of PTSD also show alterations in the AVP signaling in distinct brain areas. However, pharmacological treatment targeting central AVP receptors via systemic routes is hampered by possible side effects that are linked to the peripheral action of AVP as a hormone. Indeed, the V1a receptor, the most common receptor subtype in the brain, is implicated in vasoconstriction. Thus, systemic treatment with V1a receptor antagonists would be implicated in hypotonia. This implies that novel treatment concepts are needed to target AVP receptors not only at brain level but also in distinct brain areas, to offer alternative treatments for PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos , Humanos , Ratos , Ratos Brattleboro , Receptores de Vasopressinas/genética , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Estresse Psicológico , Vasopressinas
13.
Stress ; 23(6): 715-731, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32666865

RESUMO

Posttraumatic stress disorder (PTSD) is triggered by traumatic events in 10-20% of exposed subjects. N-linked glycosylation, by modifying protein functions, may provide an important environmental link predicting vulnerability. Our goals were (1) to find alterations in plasma N-glycome predicting stress-vulnerability; (2) to investigate how trauma affects N-glycome in the plasma (PGP) and in three PTSD-related brain regions (prefrontal cortex, hippocampus and amygdala; BGP), hence, uncover specific targets for PTSD treatment. We examined male (1) controls, (2) traumatized vulnerable and (3) traumatized resilient rats both before and several weeks after electric footshock. Vulnerable and resilient groups were separated by z-score analysis of behavior. Higher freezing behavior and decreased social interest were detected in vulnerable groups compared to control and resilient rats. Innate anxiety did not predict vulnerability, but pretrauma levels of PGP10(FA1G1Ga1), PGP11(FA2G2), and PGP15(FA3G2) correlated positively with it, the last one being the most sensitive. Traumatic stress induced a shift from large, elaborate N-glycans toward simpler neutral structures in the plasma of all traumatized animals and specifically in the prefrontal cortex of vulnerable rats. In plasma trauma increased PGP17(A2G2S) level in vulnerable animals. In all three brain regions, BGP11(F(6)A2B) was more abundant in vulnerable rats, while most behavioral correlations occurred in the prefrontal cortex. In conclusion, we found N-glycans (especially PGP15(FA3G2)) in plasma as possible biomarkers of vulnerability to trauma that warrants further investigation. Posttrauma PGP17(A2G2S1) increase showed overlap with human results highlighting the utility and relevance of this animal model. Prefrontal cortex is a key site of trauma-induced glycosylation changes that could modulate the behavioral outcome.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Tonsila do Cerebelo , Animais , Biomarcadores , Glicômica , Masculino , Ratos , Estresse Psicológico
14.
J Neurosci ; 38(17): 4065-4075, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29487128

RESUMO

An important question in behavioral neurobiology is how particular neuron populations and pathways mediate the overall roles of brain structures. Here we investigated this issue by studying the medial prefrontal cortex (mPFC), an established locus of inhibitory control of aggression. We established in male rats that dominantly distinct mPFC neuron populations project to and produce dense fiber networks with glutamate release sites in the mediobasal hypothalamus (MBH) and lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Optogenetic stimulation of mPFC terminals in MBH distinctively increased bite counts in resident/intruder conflicts, whereas the stimulation of similar terminals in LH specifically resulted in violent bites. No other behaviors were affected by stimulations. These findings show that the mPFC controls aggressiveness by behaviorally dedicated neuron populations and pathways, the roles of which may be opposite to those observed in experiments where the role of the whole mPFC (or of its major parts) has been investigated. Overall, our findings suggest that the mPFC organizes into working units that fulfill specific aspects of its wide-ranging roles.SIGNIFICANCE STATEMENT Aggression control is associated with many cognitive and emotional aspects processed by the prefrontal cortex (PFC). However, how the prefrontal cortex influences quantitative and qualitative aspects of aggressive behavior remains unclear. We demonstrated that dominantly distinct PFC neuron populations project to the mediobasal hypothalamus (MBH) and the lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Stimulation of mPFC fibers in MBH distinctively increased bite counts during fighting, whereas stimulation of similar terminals in LH specifically resulted in violent bites. Overall, our results suggest a direct prefrontal control over the hypothalamus, which is involved in the modulation of quantitative and qualitative aspects of aggressive behavior through distinct prefrontohypothalamic projections.


Assuntos
Agressão , Hipotálamo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Masculino , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Ratos , Ratos Wistar
15.
Cell Mol Neurobiol ; 38(1): 37-52, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28776199

RESUMO

Maintenance of the homeostasis in a constantly changing environment is a fundamental process of life. Disturbances of the homeostatic balance is defined as stress response and is induced by wide variety of challenges called stressors. Being the main excitatory neurotransmitter of the central nervous system glutamate is important in the adaptation process of stress regulating both the catecholaminergic system and the hypothalamic-pituitary-adrenocortical axis. Data are accumulating about the role of different glutamatergic receptors at all levels of these axes, but little is known about the contribution of different vesicular glutamate transporters (VGluT1-3) characterizing the glutamatergic neurons. Here we summarize basic knowledge about VGluTs, their role in physiological regulation of stress adaptation, as well as their contribution to stress-related psychopathology. Most of our knowledge comes from the VGluT3 knockout mice, as VGluT1 and 2 knockouts are not viable. VGluT3 was discovered later than, and is not as widespread as the VGluT1 and 2. It may co-localize with other transmitters, and participate in retrograde signaling; as such its role might be unique. Previous reports using VGluT3 knockout mice showed enhanced anxiety and innate fear compared to wild type. Moreover, these knockout animals had enhanced resting corticotropin-releasing hormone mRNA levels in the hypothalamus and disturbed glucocorticoid stress responses. In conclusion, VGluT3 participates in stress adaptation regulation. The neuroendocrine changes observed in VGluT3 knockout mice may contribute to their anxious, fearful phenotype.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Medo/fisiologia , Medo/psicologia , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Camundongos Knockout , Vias Neurais/metabolismo , Estresse Psicológico/genética , Proteínas Vesiculares de Transporte de Glutamato/fisiologia
16.
Stress ; 21(2): 151-161, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29310485

RESUMO

Glutamatergic neurons, characterized by vesicular glutamate transporters (VGluT1-3) provide the main excitation in the brain. Their disturbances have been linked to various brain disorders, which could be also modeled by the contextual fear test in rodents. We aimed to characterize the participation of VGluT3 in the development of contextual fear through its contribution to hypothalamic-pituitary-adrenocortical axis (HPA) regulation using knockout (KO) mice. Contextual fear conditioning was induced by foot shock and mice were examined 1 and 7 d later in the same environment comparing wild type with KO. Foot shock increased the immobility time without context specificity. Additionally, foot shock reduced open arm time in the elevated plus maze (EPM) test, and distance traveled in the open field (OF) test, representing the generalization of fear. Moreover, KO mice spent more time with freezing during the contextual fear test, less time in the open arm of the EPM, and traveled a smaller distance in the OF, with less entries into the central area. However, there was no foot shock and genotype interaction suggesting that VGluT3 does not influence the fear conditioning, rather determines anxiety-like characteristic of the mice. The resting hypothalamic CRH mRNA was higher in KO mice with reduced stressor-induced corticosterone elevations. Immunohistochemistry revealed the presence of VGluT3 positive fibers in the paraventricular nucleus of hypothalamus, but not on the hypophysis. As a summary, we confirmed the involvement of VGluT3 in innate fear, but not in the development of fear memory and generalization, with a significant contribution to HPA alterations. Highlights VGluT3 KO mice show innate fear without significant influence on fear memory and generalization. A putative background is the higher resting CRH mRNA level in their PVN and reduced stress-reactivity.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Medo/fisiologia , Memória/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Condicionamento Clássico/fisiologia , Corticosterona/sangue , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo
17.
Endocr Regul ; 52(4): 222-238, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31517609

RESUMO

The periaqueductal gray (PAG) is less referred in relationship with emotions than other parts of the brain (e.g. cortex, thalamus, amygdala), most probably because of the difficulty to reach and manipulate this small and deeply lying structure. After defining how to evaluate emotions, we have reviewed the literature and summarized data of the PAG contribution to the feeling of emotions focusing on the behavioral and neurochemical considerations. In humans, emotions can be characterized by three main domains: the physiological changes, the communicative expressions, and the subjective experiences. In animals, the physiological changes can mainly be studied. Indeed, early studies have considered the PAG as an important center of the emotions-related autonomic and motoric processes. However, in vivo imaging have changed our view by highlighting the PAG as a significant player in emotions-related cognitive processes. The PAG lies on the crossroad of networks important in the regulation of emotions and therefore it should not be neglected. In vivo imaging represents a good tool for studying this structure in living organism and may reveal new information about its role beyond its importance in the neurovegetative regulation.


Assuntos
Emoções/fisiologia , Imageamento por Ressonância Magnética , Substância Cinzenta Periaquedutal/fisiologia , Animais , Comportamento/fisiologia , Mapeamento Encefálico/métodos , Mapeamento Encefálico/normas , Humanos , Substância Cinzenta Periaquedutal/diagnóstico por imagem
18.
Behav Pharmacol ; 28(8): 598-609, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29099403

RESUMO

Optogenetics was the method of the year in 2010 according to Nature Neuroscience. Since then, this method has become widespread, the use of virally delivered genetic tools has extended to other fields such as pharmacogenetics, and optogenetic techniques have become frequently applied in genetically manipulated animals for in-vivo circuit analysis and behavioral studies. However, several issues should be taken into consideration when planning such experiments. We aimed to summarize the critical points concerning optogenetic manipulation of a specific brain area in mutant mice. First, the appropriate vector should be chosen to allow optimal optogenetic manipulation. Adeno-associated viral vectors are the most common carriers with different available serotypes. Light-sensitive channels are available in many forms, and the expression of the delivered genetic material can be influenced in many ways. Second, selecting the adequate stimulation protocol is also essential. The pattern, intensity, and timing could be determinative parameters. Third, the mutant strain might have a phenotype that influences the observed behavior. In conclusion, detailed preliminary experiments and numerous control groups are required to choose the best vector and stimulation protocol and to ensure that the mutant animals do not have a specific phenotype that can influence the examined behavior.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Camundongos Transgênicos , Optogenética/métodos , Animais , Encéfalo/anatomia & histologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Optogenética/instrumentação
19.
Ideggyogy Sz ; 70(1-2): 25-32, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29870190

RESUMO

BACKGROUND AND PURPOSE: Weaning is an important period of life and its timing may influence the resilence for later stress. One of the most important stress-related disorder is gastric ulceration. METHODS: Therefore we aimed to investigate the sensitivity of gastric mucosa to cold (at 16°C) water immersion stress (WIS for 3h) in adult (75-day-old) female and male rats after weaning them at different timepoints (at 17, 21, 30, 36 or 42 postnatal days). The connection with stress was studied by comparing control groups to those underwent WIS at the time of weaning and measuring corticosterone levels at the time of collecting the stomach samples. RESULTS: The timing of weaning has strong impact on all studied parameters. Stress-induced erosion development was the smallest in rats weaned at 36-day independently from preconditioning with WIS at weaning, or sex, despite a clear sex-effect on blood corticosterone levels and body weight. WIS at weaning influenced only the body weight in adult rats weaned at 30-day, being higher in stressed than in control groups. There was no clear overall correlation between erosion area and blood corticosterone measures. CONCLUSION: Taken together our results confirm that the timing of weaning has long-lasting impact on the resiliance of gastric mucosa to ulcerogenic stressful events. In rats the postnatal day 30-36 seems to be optimal for weaning in both sexes as both earlier and later weaning increased vulnerability. Females seems to be more vulnerable to the effect of weaning than males.


Assuntos
Mucosa Gástrica/patologia , Úlcera Gástrica/etiologia , Estresse Psicológico/complicações , Desmame , Animais , Feminino , Masculino , Ratos , Ratos Wistar , Úlcera Gástrica/fisiopatologia , Estresse Psicológico/fisiopatologia
20.
Stress ; 19(4): 434-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27442776

RESUMO

Stress and related disorders are in the focus of interest and glutamate is one of the most important neurotransmitters that can affect these processes. Glutamatergic neurons are characterized by vesicular glutamate transporters (VGluT1-3) among which vGluT3 is unique contributing to the non-canonical, neuromodulatory effect of glutamate. We aimed to study the role of vGluT3 in stress axis regulation and related anxiety during the early postnatal period using knockout (KO) mice with special focus on sex differences. Anxiety was explored on postnatal day (PND) 7-8 by maternal separation-induced ultrasonic vocalization (USV). Stress-hormone levels were detected 60 min after intraperitoneal lipopolysaccharide (LPS) injection 7 days later. Both genotypes gained weight, but on PND 14-15 KO mice pups had smaller body weight compared to wild type (WT). vGluT3 KO mice reacted to an immune stressor with enhanced adrenocorticotropin (ACTH) and corticosterone secretion compared to WT. Although there was a tendency for enhanced anxiety measured by more emitted USV, this did not reach the level of significance. The only sex-related effect was the enhanced corticosterone reactivity in male pups. For the HPA axis regulation in neonates vGluT3 expression seems to be dispensable under basal conditions, but is required for optimal response to immune stressors, most probably through an interaction with other neurotransmitters. Disturbance of the fine balance between these systems may result in a borderline enhanced anxiety-like behavior in vGluT3 KO pups.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Ansiedade/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Privação Materna , Sistema Hipófise-Suprarrenal/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Animais Recém-Nascidos , Corticosterona/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Vocalização Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA