Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592508

RESUMO

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Assuntos
Kluyveromyces , Ácido Succínico , Kluyveromyces/genética , Perfilação da Expressão Gênica , Transcriptoma
2.
Biotechnol Lett ; 42(12): 2711-2720, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32761466

RESUMO

OBJECTIVE: The objective is to explore the effects of enhancing the activity of yeast ferulic acid decarboxylase (FDC1) on the level of 4-vinylguaiacol (4-VG) and the consumption of its precursor ferulic acid (FA) in top-fermented wheat beer. RESULTS: Expression of Bacillus pumilus FDC1 in brewer's yeast showed a better effect on the FDC1 activity than overexpression of the endogenous enzyme. The 4-VG content was increased by 34%, and the consumption time of FA was shortened from 48 to 12 h. Since the intracellular accumulation of the FDC1 substrate did not increase over time, to reduce the FA transport burden on cells and shorten the decarboxylation time, B. pumilus FDC1 was further secreted extracellularly. The resulted strain showed a 65% increase in 4-VG content in the FA-containing medium, and produced about 3 mg L-1 4-VG in the top-fermented wheat beer, increasing by 61% than control. However, further increasing the secretory expression level of FDC1 only accelerated FA consumption. CONCLUSIONS: These results suggested that appropriate secretion of bacterial FDC1 into wort could be used as a potential alternative strategy to increase the level of 4-VG in top-fermented wheat beer.


Assuntos
Cerveja/microbiologia , Carboxiliases/genética , Alimentos Fermentados/microbiologia , Guaiacol/análogos & derivados , Bacillus pumilus/enzimologia , Carboxiliases/química , Regulação da Expressão Gênica/genética , Guaiacol/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Triticum/química
3.
Biotechnol Adv ; 68: 108222, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37516259

RESUMO

Traditional plastic products have caused serious environmental pollution due to difficulty to be degraded in the natural environment. In the recent years, biodegradable plastics are receiving increasing attention due to advantages in natural degradability and environmental friendliness. Biodegradable plastics have potential to be used in food, agriculture, industry, medicine and other fields. However, the high production cost of such plastics is the bottleneck that limits their commercialization and application. Yeasts, including budding yeast and non-conventional yeasts, are widely studied to produce biodegradable plastics and their organic acid monomers. Compared to bacteria, yeast strains are more tolerable to multiple stress conditions including low pH and high temperature, and also have other advantages such as generally regarded as safe, and no phage infection. In addition, synthetic biology and metabolic engineering of yeast have enabled its rapid and efficient engineering for bioproduction using various renewable feedstocks, especially lignocellulosic biomass. This review focuses on the recent progress in biosynthesis technology and strategies of monomeric organic acids for biodegradable polymers, including polylactic acid (PLA), polyhydroxyalkanoate (PHA), polybutylene succinate (PBS), and polybutylene adipate terephthalate (PBAT) using yeast cell factories. Improving the performance of yeast as a cell factory and strategies to improve yeast acid stress tolerance are also discussed. In addition, the critical challenges and future prospects for the production of biodegradable plastic monomer using yeast are also discussed.


Assuntos
Plásticos Biodegradáveis , Poli-Hidroxialcanoatos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biodegradação Ambiental , Poli-Hidroxialcanoatos/metabolismo , Alimentos
4.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2231-2247, 2023 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-37401592

RESUMO

Organic acids are organic compounds that can be synthesized using biological systems. They often contain one or more low molecular weight acidic groups, such as carboxyl group and sulphonic group. Organic acids are widely used in food, agriculture, medicine, bio-based materials industry and other fields. Yeast has unique advantages of biosafety, strong stress resistance, wide substrate spectrum, convenient genetic transformation, and mature large-scale culture technology. Therefore, it is appealing to produce organic acids by yeast. However, challenges such as low concentration, many by-products and low fermentation efficiency still exist. With the development of yeast metabolic engineering and synthetic biology technology, rapid progress has been made in this field recently. Here we summarize the progress of biosynthesis of 11 organic acids by yeast. These organic acids include bulk carboxylic acids and high-value organic acids that can be produced naturally or heterologously. Finally, future prospects in this field were proposed.


Assuntos
Compostos Orgânicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácidos Carboxílicos/metabolismo , Engenharia Metabólica , Fermentação , Ácidos
5.
J Agric Food Chem ; 71(41): 15224-15236, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37811818

RESUMO

Saccharomyces cerevisiae has emerged as a preferred source for industrial production of ribonucleic acids (RNAs) and their derivatives, which find wide applications in the food and pharmaceutical sectors. In this study, we employed a modified RNA polymerase I-mediated green fluorescent protein expression system, previously developed by our team, to screen and identify an industrial S. cerevisiae strain with an impressive 18.2% increase in the RNA content. Transcriptome analysis revealed heightened activity of genes and pathways associated with rRNA transcription, purine metabolism, and phosphate transport in the high nucleic acid content mutant strains. Our findings highlighted the crucial role of the transcription factor Sfp1p in enhancing the expression of two key components of the transcription initiation factor complex, Rrn7p and Rrn11p, thereby promoting rRNA synthesis. Moreover, elevated expression of 5'-inosine monophosphate dehydrogenases, regardless of the specific isoform (IMD2, 3, or 4), resulted in increased rRNA synthesis through heightened GTP levels. Additionally, exogenous phosphate application, coupled with overexpression of the phosphate transporter PHO84, led to a 61.4% boost in the RNA yield, reaching 2050.4 mg/L. This comprehensive study provides valuable insights into the mechanism of RNA synthesis and serves as a reference for augmenting RNA production in the food industry.


Assuntos
Ácidos Nucleicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA/metabolismo , Fosfatos/metabolismo , Ácidos Nucleicos/metabolismo
6.
Microb Biotechnol ; 13(6): 2008-2019, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32854170

RESUMO

Saccharomyces cerevisiae is the preferred source of RNA derivatives, which are widely used as supplements for foods and pharmaceuticals. As the most abundant RNAs, the ribosomal RNAs (rRNAs) transcribed by RNA polymerase I (Pol I) have no 5' caps, thus cannot be translated to proteins. To screen high-nucleic-acid content yeasts more efficiently, a cap-independent protein expression system mediated by Pol I has been designed and established to monitor the regulatory changes of rRNA synthesis by observing the variation in the reporter genes expression. The elements including Pol I-recognized rDNA promoter, the internal ribosome entry site from cricket paralytic virus which can recruit ribosomes internally, reporter genes (URA3 and yEGFP3), oligo-dT and an rDNA terminator were ligated to a yeast episomal plasmid. This system based on the URA3 gene worked well by observing the growth phenotype and did not require the disruption of cap-dependent initiation factors. The fluorescence intensity of strains expressing the yEGFP3 gene increased and drifted after mutagenesis. Combined with flow cytometry, cells with higher GFP level were sorted out. A strain showed 58% improvement in RNA content and exhibited no sequence alteration in the whole expression cassette introduced. This study provides a novel strategy for breeding high-nucleic-acid content yeasts.


Assuntos
Ácidos Nucleicos , RNA Polimerase I , DNA Ribossômico , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA