Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 29(6): 1041-50, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27161607

RESUMO

1-Chloro-3-buten-2-one (CBO) is an in vitro metabolite of 1,3-butadiene (BD), a carcinogenic air pollutant. CBO exhibited potent cytotoxicity and genotoxicity that have been attributed in part to its reactivity toward DNA. Previously, we have characterized the CBO adducts with 2'-deoxycytidine and 2'-deoxyguanosine. In the present study, we report on the reaction of CBO with 2'-deoxyadenosine (dA) under in vitro physiological conditions (pH 7.4, 37 °C). We used the synthesized standards and their decomposition and acid-hydrolysis products to characterize the CBO-DNA adducts formed in human cells. The fused-ring dA adducts (dA-1 and dA-2) were readily synthesized and were structurally characterized as 1,N(6)-(1-hydroxy-1-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine and 1,N(6)-(1-hydroxy-1-chloromethylpropan-1,3-diyl)-2'-deoxyadenosine, respectively. dA-1 exhibited a half-life of 16.0 ± 0.7 h and decomposed to dA at pH 7.4 and 37 °C. At similar conditions, dA-2 decomposed to dA-1 and dA, and had a half-life of 0.9 ± 0.1 h. These results provide strong evidence for dA-1 being a degradation product of dA-2. dA-1 is formed by replacement of the chlorine atom of dA-2 by a hydroxyl group. The slow decomposition of dA-1 to dA, along with the detection of hydroxymethyl vinyl ketone (HMVK) as another degradation product, suggested equilibrium between dA-1 and a ring-opened carbonyl-containing intermediate that undergoes a retro-Michael reaction to yield dA and HMVK. Acid hydrolysis of dA-1 and dA-2 yielded the corresponding deribosylated products A-1D and A-2D, respectively. In the acid-hydrolyzed reaction mixture of CBO with calf thymus DNA, both A-1D and A-2D could be detected; however, the amount of A-2D was significantly larger than that of A-1D. Interestingly, only A-2D could be detected by LC-MS analysis of acid-hydrolyzed DNA from cells incubated with CBO, suggesting that dA-2 was stable in DNA and thus may play an important role in the genotoxicity and carcinogenicity of BD. In addition, A-2D could be developed as a biomarker of CBO formation in human cells.


Assuntos
Butadienos/metabolismo , Butanonas/química , Butanonas/metabolismo , Adutos de DNA/análise , Adutos de DNA/química , DNA/química , Desoxiadenosinas/análise , Animais , Butadienos/química , Bovinos , DNA/metabolismo , Adutos de DNA/metabolismo , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Células Hep G2 , Humanos , Estrutura Molecular
2.
Toxicol Appl Pharmacol ; 271(1): 13-9, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23643860

RESUMO

The cytotoxicity, genotoxicity, and mutagenicity of 1-chloro-2-hydroxy-3-butene (CHB), a known in vitro metabolite of the human carcinogen 1,3-butadiene, have not previously been investigated. Because CHB can be bioactivated by alcohol dehydrogenases to yield 1-chloro-3-buten-2-one (CBO), a bifunctional alkylating agent that caused globin-chain cross-links in erythrocytes, in the present study we investigated the cytotoxic and genotoxic potential of CHB and CBO in human normal hepatocyte L02 cells using the MTT assay, the relative cloning efficiency assay and the comet assay. We also investigated the mutagenic potential of these compounds with the Ames test using Salmonella strains TA1535 and TA1537. The results provide clear evidence for CHB and CBO being both cytotoxic and genotoxic with CBO being approximately 100-fold more potent than CHB. Interestingly, CHB generated both single-strand breaks and alkali-labile sites on DNA, whereas CBO produced only alkali-labile sites. CHB did not directly result in DNA breaks, whereas CBO was capable of directly generating breaks on DNA. Interestingly, both compounds did not induce DNA cross-links as examined by the comet assay. The Ames test results showed that CHB induced point mutation but not frameshift mutation, whereas the toxic effects of CBO made it difficult to reliably assess the mutagenic potential of CBO in the two strains. Collectively, the results suggest that CHB and CBO may play a role in the mutagenicity and carcinogenicity of 1,3-butadiene.


Assuntos
Butanóis/toxicidade , Butanonas/toxicidade , Carcinógenos/toxicidade , Hepatócitos/efeitos dos fármacos , Mutagênicos/toxicidade , Butadienos/metabolismo , Butadienos/toxicidade , Linhagem Celular , Ensaio Cometa , Quebras de DNA/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Testes de Mutagenicidade , Mutação Puntual/efeitos dos fármacos , Salmonella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA