Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(19): e9872, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39044122

RESUMO

RATIONALE: Eucommia cortex is the core herb in traditional Chinese medicine preparations for the treatment of osteoporosis. Pinoresinol diglucoside (PDG), the quality control marker and the key pharmacodynamic component in Eucommia cortex, has attracted global attention because of its definite effects on osteoporosis. However, the in vivo metabolic characteristics of PDG and its anti-osteoporotic mechanism are still unclear, restricting its development and application. METHODS: Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to analyze the metabolic characteristics of PDG in rats, and its anti-osteoporosis targets and mechanism were predicted using network pharmacology. RESULTS: A total of 51 metabolites were identified or tentatively characterized in rats after oral administration of PDG (10 mg/kg/day), including 9 in plasma, 28 in urine, 13 in feces, 10 in liver, 4 in heart, 3 in spleen, 11 in kidneys, and 5 in lungs. Furan-ring opening, dimethoxylation, glucuronidation, and sulfation were the main metabolic characteristics of PDG in vivo. The potential mechanism of PDG against osteoporosis was predicted using network pharmacology. PDG and its metabolites could regulate BCL2, MARK3, ALB, and IL6, involving PI3K-Akt signaling pathway, estrogen signaling pathway, and so on. CONCLUSIONS: This study was the first to demonstrate the metabolic characteristics of PDG in vivo and its potential anti-osteoporosis mechanism, providing the data for further pharmacological validation of PDG in the treatment of osteoporosis.


Assuntos
Lignanas , Farmacologia em Rede , Osteoporose , Ratos Sprague-Dawley , Animais , Lignanas/farmacologia , Lignanas/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/química , Metabolômica/métodos , Glucosídeos/farmacologia , Metaboloma/efeitos dos fármacos , Espectrometria de Massas/métodos
2.
Chem Biodivers ; 21(4): e202400290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389159

RESUMO

Osthole (also known as Osthol) is the main anti-inflammatory coumarin found in Cnidium monnieri and severs as the exclusive quality-controlled component according the Chinese Pharmacopoeia. However, its underlying anti-inflammatory mechanism remains unknown. In this study, we demonstrated that Osthole treatment significantly inhibited the generation of TNF-α, but not IL-6 in the classical LPS-stimulated RAW264.7 macrophage model. In addition, LPS induced the activation of both MAPK and NF-κB signalling pathways, of which the former was dose-dependently restrained by Osthole via suppressing the phosphorylation of JNK and P38 proteins, while the phosphorylation of IκB and P65 proteins remained unaffected. Interestingly, Osthole dose-dependently up-regulated the expression of the key cholinergic anti-inflammatory pathway regulator α7nAChR, and the TNF-α inhibition effect of Osthole was also significantly alleviated by the treatment of α7nAChR antagonist methylbetaine. These results demonstrate that Osthole may regulate TNF-α by promoting the expression of α7nAChR, thereby activate the vagus nerve-dependent cholinergic anti-inflammatory pathway.


Assuntos
Fator de Necrose Tumoral alfa , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Regulação para Cima , Lipopolissacarídeos/farmacologia , Neuroimunomodulação , Cumarínicos/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA