Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(23): e202403415, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38573437

RESUMO

Metal-backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear-induced orientation method to construct a flexible nickel-backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 µW ⋅m-1 K-2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply.

2.
Angew Chem Int Ed Engl ; 62(10): e202216060, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640110

RESUMO

Constructing the backbones of polymers with metal atoms is an attractive strategy to develop new functional polymeric materials, but it has yet to be studied due to synthetic challenges. Here, metal atoms are interconnected as the backbones of polymers to yield metal-backboned polymers (MBPs). Rational design of multidentate ligands synthesized via an efficient iterative approach leads to the successful construction of a series of nickel-backboned polymers (NBPs) with well-defined lengths and up to 21 nickel atoms, whose structures are systematically confirmed. These NBPs exhibit strong and length-depended absorption with narrow band gaps, offering promising applications in optoelectronic devices and semiconductors. We also demonstrate the high thermal stability and solution processsability of such nickel-backboned polymers. Our results represent a new opportunity to design and synthesize a variety of new metal-backboned polymers for promising applications in the future.

3.
J Am Chem Soc ; 142(11): 5154-5161, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32088950

RESUMO

With the purpose to achieve panchromatic absorption for constructing efficient dye-sensitized solar cells (DSSCs), the cosensitization approach of using two dyes with complementary absorption has been developed with great success. However, this approach usually requires time-consuming optimization of a number of parameters for controlling the ratio and distribution of the two coadsorbed dyes on TiO2 film, which limits the potentials of this strategy. We herein report an alternative approach for developing efficient DSSCs by designing a class of "concerted companion dyes" with two complementary dye components linked covalently. Thus, a newly synthesized organic dye Z2 was linked to a recently reported doubly strapped porphyrin dye XW51 through flexible chains with various lengths to afford XW60-XW63. These dyes exhibit excellent absorption and efficiencies in the range of 8.8%-11.7%. Notably, upon coadsorption with chenodeoxycholic acid, XW61 affords an impressive efficiency of 12.4%, a record for iodine electrolyte-based DSSCs, to the best of our knowledge. In addition, these dyes also exhibit the advantages of easy cell fabrication, simple optimization, as well as excellent photostability.

4.
Nat Protoc ; 19(5): 1557-1589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429518

RESUMO

Mono-dimensional fiber-based electronics can effectively address the growing demand for improved wearable electronic devices because of their exceptional flexibility and stretchability. For practical applications, functional fiber electronic devices need to be integrated into more powerful and versatile systems to execute complex tasks that cannot be completed by single-fiber devices. Existing techniques, such as printing and sintering, reduce the flexibility and cause low connection strength of fiber-based electronic devices because of the high curvature of the fiber. Here, we outline a twisting fabrication process for fiber electrodes, which can be woven into functional threads and integrated within textiles. The design of the twisted thread structure for fiber devices ensures stable interfacing and good flexibility, while the textile structure features easily accessible, interlaced points for efficient circuit connections. Electronic textiles can be customized to act as displays, health monitors and power sources. We detail three main fabrication sections, including the fabrication of the fiber electrodes, their twisting into electronic threads and their assembly into functional textile-based devices. The procedures require ~10 d and are easily reproducible by researchers with expertise in fabricating energy and electronic devices.


Assuntos
Eletrodos , Desenho de Equipamento , Têxteis , Dispositivos Eletrônicos Vestíveis , Eletrônica/instrumentação
5.
Adv Mater ; 36(38): e2407874, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39054698

RESUMO

Implantable neural devices that record neurons in various states, including static states, light activities such as walking, and vigorous activities such as running, offer opportunities for understanding brain functions and dysfunctions. However, recording neurons under vigorous activities remains a long-standing challenge because it leads to intense brain deformation. Thus, three key requirements are needed simultaneously for neural devices, that is, low modulus, low specific interfacial impedance, and high electrical conductivity, to realize stable device/brain interfaces and high-quality transmission of neural signals. However, they always contradict each other in current material strategies. Here, a soft fiber neural device capable of stably tracking individual neurons in the deep brain of medium-sized animals under vigorous activity is reported. Inspired by the axon architecture, this fiber neural device is constructed with a conductive gel fiber possessing a network-in-liquid structure using conjugated polymers and liquid matrices and then insulated with soft fluorine rubber. This strategy reconciles the contradictions and simultaneously confers the fiber neural device with low modulus (300 kPa), low specific impedance (579 kΩ µm2), and high electrical conductivity (32 700 S m-1) - ≈1-3 times higher than hydrogels. Stable single-unit spike tracking in running cats, which promises new opportunities for neuroscience is demonstrated.


Assuntos
Axônios , Condutividade Elétrica , Animais , Axônios/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Polímeros/química
6.
Adv Mater ; 35(32): e2301321, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154271

RESUMO

Information-processing devices are the core components of modern electronics. Integrating them into textiles is the indispensable demand for electronic textiles to form close-loop functional systems. Memristors with crossbar configuration are regarded as promising building blocks to design woven information-processing devices that seamlessly unify with textiles. However, the memristors always suffer from severe temporal and spatial variations due to the random growth of conductive filaments during filamentary switching processes. Here, inspired by the ion nanochannels across synaptic membranes, a highly reliable textile-type memristor made of Pt/CuZnS memristive fiber with aligned nanochannels, showing small set voltage variation (<5.6%) under ultralow set voltage (≈0.089 V), high on/off ratio (≈106 ), and low power consumption (0.1 nW), is reported. Experimental evidence indicate that nanochannels with abundant active S defects can anchor silver ions and confine their migrations to form orderly and efficient conductive filaments. Such memristive performances enable the resultant textile-type memristor array to have high device-to-device uniformity and process complex physiological data like brainwave signals with high recognition accuracy (95%). The textile-type memristor arrays are mechanically durable to withstand hundreds of bending and sliding deformations, and seamlessly unified with sensing, power-supplying, and displaying textiles/fibers to form all-textile integrated electronic systems for new generation human-machine interactions.

7.
ACS Appl Mater Interfaces ; 13(42): 49828-49839, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641667

RESUMO

Concerted companion dyes (CC dyes) like XW61 have been demonstrated to be an effective platform for developing efficient DSSCs. However, the moderated phenothiazine-based electron donor in XW61 results in unsatisfactory Jsc. To address this problem, a stronger fluorenyl indoline-based electron donor has been used to construct porphyrin dye XW68 and organic dyes Y1-Y2. The stronger electron-donating character of the fluorenyl indoline unit leads to an enhanced Jsc value (20.48 mA·cm-2) for the individual dye XW68. On this basis, CC dyes XW69-XW70-C8 have been designed and synthesized by combining the frameworks of Y1 and Y2 with XW68. The complementary absorption characters of the porphyrin and the organic dye moieties lead to panchromatic absorption with a strong light-harvesting capability from 350 to 700 nm and the onset wavelength extended to ca. 840 nm in the IPCE curves. As a result, excellent Jsc values have been achieved (>22 mA·cm-2). In addition to the advantages of high Jsc, bulky octyl groups have been introduced into the donor of XW70-C8 to reduce dye aggregation and suppress charge recombination. Finally, a highest PCE of 11.1% with a satisfactory Jsc (22.25 mA·cm-2) and an enhanced Voc (750 mV) has been achieved upon coadsorption of XW70-C8 with CDCA. In addition, the CC dye XW70-C8-based solar cells exhibit excellent long-term photostability. These results provide an effective method for rationally improving the photovoltaic behavior, especially the Jsc of CC dyes, by introducing strong electron donor moieties with suitable substituents.

8.
Chem Sci ; 10(7): 2186-2192, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30881643

RESUMO

Porphyrin sensitizers play essential roles in the development of efficient dye-sensitized solar cells (DSSCs). To further improve power conversion efficiency (PCE), it is vital to reduce undesirable dye aggregation that causes serious charge recombination and lowered open-circuit voltages (V oc). To this end, we herein report a new class of porphyrin-based dyes XW40 and XW41, with the porphyrin cores strapped with two circle chains. Compared with the reference sensitizer XW10 which contains a porphyrin core wrapped in four dodecoxyl chains, the double strapping in XW40 not only effectively suppresses the dye aggregation but also improves the dye loading amount. As a result, the V oc and photocurrent (J sc) were improved by 19 mV and 0.8 mA cm-2, respectively, compared with the corresponding values of XW10, and the efficiency was improved from 8.6% obtained for XW10 to 9.3% for XW40. To further extend the spectral response, an electron-withdrawing benzothiadiazole (BTD) unit was introduced as an auxiliary acceptor in XW41. Impressively, the onset wavelength of its IPCE spectrum was dramatically red-shifted to 830 nm. However, the extended π-conjugation framework results in aggravated dye aggregation, and thus a lowered efficiency of 8.2% was obtained for XW41. Through a combined approach of coadsorption and cosensitization, the efficiencies were dramatically enhanced to 10.6% and 10.2% for XW40 and XW41, respectively, as a result of simultaneously enhanced V oc and J sc. The results of this work provide a novel strategy for developing efficient DSSCs by employing strapped porphyrin dyes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA