Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cerebellum ; 23(4): 1678-1696, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38280142

RESUMO

This study aimed to investigate the potential therapeutic effects of cerebellar transcranial magnetic stimulation (TMS) on balance and limb motor impairments in stroke patients. A meta-analysis of randomized controlled trials was conducted to assess the effects of cerebellar TMS on balance and motor impairments in stroke patients. Additionally, an activation likelihood estimation (ALE) meta-analysis was performed on resting-state functional magnetic resonance imaging (fMRI) studies to compare spontaneous neural activity differences between stroke patients and healthy controls using measures including the amplitude of low frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo). The analysis included 10 cerebellar TMS studies and 18 fMRI studies. Cerebellar TMS treatment demonstrated significant improvements in the Berg Balance Scale score (p < 0.0001) and the Fugl-Meyer Assessment lower extremity score (p < 0.0001) compared to the control group in stroke patients. Additionally, spontaneous neural activity alterations were identified in motor-related regions after stroke, including the precentral gyrus, putamen, thalamus, and paracentral lobule. Cerebellar TMS shows promise as a therapeutic intervention to enhance balance and lower limb motor function in stroke patients. It is easy for clinical application and addresses the limitations of insufficient direct stimulation depth on the leg area of the cortex. However, further research combining neuroimaging outcomes with clinical measurements is necessary to validate these findings.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Equilíbrio Postural , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Imageamento por Ressonância Magnética/métodos , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/fisiopatologia , Equilíbrio Postural/fisiologia , Descanso , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento
2.
Small ; 19(49): e2304348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37621035

RESUMO

Tunnel oxide passivating contact (TOPCon) solar cells (SCs) as one of the most competitive crystalline silicon (c-Si) technologies for the TW-scaled photovoltaic (PV) market require higher passivation performance to further improve their device efficiencies. Here, the successful construction of a double-layered polycrystalline silicon (poly-Si) TOPCon structure is reported using an in situ nitrogen (N)-doped poly-Si covered by a normal poly-Si, which achieves excellent passivation and contact properties simultaneously. The new design exhibits the highest implied open-circuit voltage of 755 mV and the lowest single-sided recombination current density (J0 ) of ≈0.7 fA cm⁻2 for a TOPCon structure and a low contact resistivity of less than 5 mΩ·cm2 , resulting in a high selectivity factor of ≈16. The mechanisms of passivation improvement are disclosed, which suggest that the introduction of N atoms into poly-Si restrains H overflow by forming stronger Si-N and N-H bonds, reduces interfacial defects, and induces favorable energy bending. Proof-of-concept TOPCon SCs with such a design receive a remarkable certified efficiency of 25.53%.

3.
Nanotechnology ; 34(45)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37527633

RESUMO

In preparing tunnel oxygen passivation contact (TOPCon) solar cells, the metallization process often causes damage to passivation performance. Aiming to solve the issue, we investigated the advantages of the novel polysilicon, i.e. the carbon (C) or nitrogen (N) doped polysilicon, in resisting metallization damage. Our study reveals that C- or N-doped polysilicon does mitigate the passivation damage caused by the physical-vapor deposition metallization processes, i.e. the decrease in implied open-circuit voltage (iVoc) and the increase in recombination current (J0) are both suppressed. For the novel polysilicon samples suffered metallization, the decrease ofiVocwas only ∼-1 mV, and the increase ofJ0< 1 fA cm-2; in contrast, the decrease ofiVocof the standard polysilicon samples was -7 mV, and the increase ofJ0was ∼6 fA cm-2. In addition, we also explored the difference between the finger-metal and the full-metal metallization, showing that the finger-metal has less passivation damage due to the smaller contact area. However, the free energy loss analysis indicates that the advantage of the novel polysilicon in resisting metallization damage is overshadowed by the disadvantage of the higher contact resistivity when finger-metal electrodes are used. Numerical simulations prove that the efficiency of the solar cell with novel polysilicon still shows >0.2% absolute efficiency higher than that with the standard polysilicon, reaching 26% when full-metal electrodes by thermal evaporation.

4.
Opt Express ; 30(12): 21309-21323, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224853

RESUMO

We demonstrate experimentally a flexible crystalline silicon (c-Si) solar cell (SC) based on dopant-free interdigitated back contacts (IBCs) with thickness of merely 50 µm for, to the best of our knowledge, the first time. A MoOx thin film is proposed to cover the front surface and the power conversion efficiency (PCE) is boosted to over triple that of the uncoated SC. Compared with the four-time thicker SC, our thin SC is still over 77% efficient. Systematic studies show the front MoOx film functions for both antireflection and passivation, contributing to the excellent performance. A double-interlayer (instead of a previously-reported single interlayer) is identified at the MoOx/c-Si interface, leading to efficient chemical passivation. Meanwhile, due to the large workfunction difference, underneath the interface a strong built-in electric field is generated, which intensifies the electric field over the entire c-Si active layer, especially in the 50-µm thick layer. Photocarriers are expelled quickly to the back contacts with less recombined and more extracted. Besides, our thin IBC SC is highly flexible. When bent to a radius of 6 mm, its PCE is still 76.6% of that of the unbent cell. Fabricated with low-temperature and doping-free processes, our thin SCs are promising as cost-effective, light-weight and flexible power sources.

5.
Opt Express ; 27(11): 16195-16205, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163803

RESUMO

The optical properties of hexagonal GaN microdisk arrays grown on sapphire substrates by selective area growth (SAG) technique were investigated both experimentally and theoretically. Whispering-gallery-mode (WGM) lasing is observed from various directions of the GaN pyramids collected at room temperature, with the dominant lasing mode being Transverse-Electric (TE) polarized. A relaxation of compressive strain in the lateral overgrown region of the GaN microdisk is illustrated by photoluminescence (PL) mapping and Raman spectroscopy. A strong correlation between the crystalline quality and lasing behavior of the GaN microdisks was also demonstrated.

6.
Opt Lett ; 44(19): 4865-4868, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568462

RESUMO

To unlock the full potential of the perovskite solar cell (PSC) photocurrent density and power conversion efficiency, the topic of optical management and design optimization is of absolute importance. Here, we propose a gradient-index optical design of the PSC based on a Gaussian-type front-side glass structure. Numerical simulations clarify a broadband light-harvesting response of the new design, showing that a maximal photocurrent density of 23.35 mA/cm2 may be expected, which is an increase by 1.21 mA/cm2 compared with that of the traditional flat-glass counterpart (22.14 mA/cm2). Comprehensive analysis of the electric field distributions elucidates the light-trapping mechanism. Furthermore, PSCs having the Gaussian index profile display superior optical properties and performance compared to those of the uniform index counterpart under varying conditions of perovskite layer thicknesses and incident angles. The simulation results in this study provide an effective design scheme to promote optical absorption in PSCs.

7.
Nanotechnology ; 29(45): 45LT01, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30160239

RESUMO

Enhanced photoluminescence and improved internal quantum efficiency were demonstrated for ultraviolet light emitting diodes (UV-LEDs) with Al nanohole arrays deposited on the top surface. The effects of the thickness and periodicity of the plasmonic structures on the optical properties of UV-LEDs were studied, and an optimized nanohole array parameter was illustrated. Classical electrodynamic simulations showed that the radiated power is mostly concentrated along the edge of the Al nanohole arrays. Even though no obvious dip was observed in the transmission spectra associated with localized surface plasmon resonance, significant improvements in radiatiative recombination and light extraction efficiency were demonstrated, indicating the influence of Al nanohole arrays on the light emission control of UV-LEDs. It is anticipated that the enhanced luminescence can be obtained for various emitting wavelengths by directly adjusting the periodicity and morphology of the Al nanohole arrays and this new technology can alleviate crystal quality requirements of III-nitride thin films in the development of high efficiency UV optoelectronic devices.

8.
Adv Mater ; 35(30): e2211962, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37079482

RESUMO

Despite the swift rise in power conversion efficiency (PCE) to more than 32%, the instability of perovskite/silicon tandem solar cells is still one of the key obstacles to practical application and is closely related to the residual strain of perovskite films. Herein, a simple surface reconstruction strategy is developed to achieve a global incorporation of butylammonium cations at both surface and bulk grain boundaries by post-treating perovskite films with a mixture of N,N-dimethylformamide and n-butylammonium iodide in isopropanol solvent, enabling strain-free perovskite films with simultaneously reduced defect density, suppressed ion migration, and improved energy level alignment. As a result, the corresponding single-junction perovskite solar cells yield a champion PCE of 21.8%, while maintaining 100% and 81% of their initial PCEs without encapsulation after storage for over 2500 h in N2 and 1800 h in air, respectively. Remarkably, a certified stabilized PCE of 29.0% for the monolithic perovskite/silicon tandems based on tunnel oxide passivated contacts is further demonstrated. The unencapsulated tandem device retains 86.6% of its initial performance after 306 h at maximum power point (MPP) tracking under continuous xenon-lamp illumination without filtering ultraviolet light (in air, 20-35 °C, 25-75%RH, most often ≈60%RH).

9.
Nat Commun ; 14(1): 2166, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061510

RESUMO

Despite the remarkable rise in the efficiency of perovskite-based solar cells, the stress-induced intrinsic instability of perovskite active layers is widely identified as a critical hurdle for upcoming commercialization. Herein, a long-alkyl-chain anionic surfactant additive is introduced to chemically ameliorate the perovskite crystallization kinetics via surface segregation and micellization, and physically construct a glue-like scaffold to eliminate the residual stresses. As a result, benefiting from the reduced defects, suppressed ion migration and improved energy level alignment, the corresponding unencapsulated perovskite single-junction and perovskite/silicon tandem devices exhibit impressive operational stability with 85.7% and 93.6% of their performance after 3000 h and 450 h at maximum power point tracking under continuous light illumination, providing one of the best stabilities to date under similar test conditions, respectively.

10.
ACS Appl Mater Interfaces ; 14(46): 52223-52232, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36377745

RESUMO

CuSCN has been widely considered a promising candidate for low-cost and high-stable hole transport material in perovskite semitransparent solar cells (STSCs). However, the low conductivity of the solution-processed CuSCN hole transport layer (HTL) hinders the hole extraction and transport in devices, which makes it hard to achieve devices with high performance. Herein, we report a facile additive engineering approach to optimize the p conductivity of CuSCN HTLs in perovskite STSCs. The n-butylammonium iodide additive facilitates the formation of Cu2+ and generates more Cu vacancies in the CuSCN HTL. This realizes a significant enhancement of the hole concentration and p conductivity of the film. Moreover, the additive improves the solubility of the CuSCN precursor solution and results in a uniform coverage on the perovskite active layer. Therefore, the perovskite STSC with a high power conversion efficiency (PCE) of 19.24% has been achieved, which is higher than that of the spiro-OMeTAD (18.83%) and CuSCN (17.45%) counterparts. In addition, the unencapsulated CuSCN-based device retains 87.5% of the initial PCE after 20 days in the ambient atmosphere.

11.
Nanomaterials (Basel) ; 11(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34361189

RESUMO

In this work, we report the same trends for the contact potential difference measured by Kelvin probe force microscopy and the effective carrier lifetime on crystalline silicon (c-Si) wafers passivated by AlOx layers of different thicknesses and submitted to annealing under various conditions. The changes in contact potential difference values and in the effective carrier lifetimes of the wafers are discussed in view of structural changes of the c-Si/SiO2/AlOx interface thanks to high resolution transmission electron microscopy. Indeed, we observed the presence of a crystalline silicon oxide interfacial layer in as-deposited (200 °C) AlOx, and a phase transformation from crystalline to amorphous silicon oxide when they were annealed in vacuum at 300 °C.

12.
ACS Appl Mater Interfaces ; 11(40): 36727-36734, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525907

RESUMO

Tin oxide (SnO2) is widely used in perovskite solar cells (PSCs) as an electron transport layer (ETL) material. However, its high surface trap density has already become a strong factor limiting PSC development. In this work, phosphoric acid is adopted to eliminate the SnO2 surface dangling bonds to increase electron collection efficiency. The phosphorus mainly exists at the boundaries in the form of chained phosphate groups, bonding with which more than 47.9% of Sn dangling bonds are eliminated. The reduction of surface trap states depresses the electron transport barriers, thus the electron mobility increases about 3 times when the concentration of phosphoric acid is optimized with 7.4 atom % in the SnO2 precursor. Furthermore, the stability of the perovskite layer deposited on the phosphate-passivated SnO2 (P-SnO2) ETL is gradually improved with an increase of the concentration. Due to the higher electron collection efficiency, the P-SnO2 ETLs can dramatically promote the power conversion efficiency (PCE) of the PSCs. As a result, the champion PSC has a PCE of 21.02%. Therefore, it has been proved that this simple method is efficient to improve the quality of ETL for high-performance PSCs.

13.
Medicine (Baltimore) ; 97(29): e11502, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30024532

RESUMO

BACKGROUND AND OBJECTIVE: The aim of this study was to compare the outcomes of transanal hemorrhoidal dearterialization (THD) and stapled hemorrhoidectomy (SH) in the treatment of hemorrhoids by a meta-analysis. METHODS: Randomized control trials (RCTs) comparing SH with THD were searched for in databases, including MEDLINE, PubMed, Web of science, Embase, and the Cochrane Library database. Data were independently extracted from each study, and a meta-analysis was performed using RevMan5.2 software. RESULTS: Eight RCTs, including 977 patients, were included in this meta-analysis. No statistically significant differences were noted between THD and SH in terms of total complications (OR, 0.93; 95% CI, 0.69, 1.25), but a significant differences were noted in terms of bleeding (OR, 1.85; 95% CI, 1.10, 3.10). The total recurrence rate was higher in THD than in SH on short-term follow-up; however, the recurrence rate was equal in both the THD and SH groups on long-term follow-up. The present study showed that no significant difference between SH and THD in terms of postoperative pain (OR, 0.43; 95% CI, -0.43, 1.29), operative time (OR, -3.12; 95% CI, -7.01, 0.77), hospital time (OR, -0.00; 95% CI, -0.21, 0.20), time before returning to work (OR,-0.50; 95%CI, -4.42,3.43), and reoperation rate (OR, 1.81; 95% CI, 0.93, 3.54). CONCLUSION: Our meta-analysis indicated that THD and SH are equally effective techniques for the treatment of hemorrhoids. However, future studies addressing cost-effectiveness, satisfaction rate, and recurrence rate over a long follow-up period are needed to validate these results.


Assuntos
Canal Anal/cirurgia , Hemorroidectomia/métodos , Hemorroidas/cirurgia , Grampeamento Cirúrgico/métodos , Hemorroidectomia/efeitos adversos , Humanos , Tempo de Internação/estatística & dados numéricos , Ligadura/métodos , Duração da Cirurgia , Satisfação do Paciente/estatística & dados numéricos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Recidiva , Reoperação/estatística & dados numéricos , Retorno ao Trabalho/estatística & dados numéricos , Grampeamento Cirúrgico/efeitos adversos , Resultado do Tratamento
14.
Sci Rep ; 7(1): 14575, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109447

RESUMO

Recently, silicon single nanowire solar cells (SNSCs) serving as the sustainable self-power sources have been integrated into optoelectronic nanodevices under the driver of technology and economy. However, conventional SNSC cannot provide the minimum energy consumption for the operation of nanodevices due to its low power conversion efficiency (PCE). Here, we propose an innovative approach to combine the n-type silicon nanowires (SiNWs) with p-type poly(3,4-ethylthiophene):poly(styrenesulfonate) (PEDOT:PSS) to form the p + n heterojunction, which shows superior opto-electric performances. Besides, PEDOT:PSS also acts as a natural anti-reflection coating (ARC) with an excellent light-trapping capability, especially in the short-wavelength range. Importantly, the photovoltaic performances of Si/PEDOT:PSS SNSC can be well maintained even in large surface recombination velocity, due to the efficient field-effect passivation of PEDOT:PSS. The minority carrier concentration at outer surface of shallow p + n heterojunction is greatly reduced by the electric field, drastically suppressing the surface recombination compared to the conventional p-i-n homojunction SNSC. Furthermore, larger junction area of p + n heterojunction facilitates the separation of photo-generated charge carriers. These results demonstrate that the Si/PEDOT:PSS SNSC is a promising alternative for micro power application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA