Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Astrobiology ; 6(4): 581-91, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16916284

RESUMO

Carbonates, predominately MgCO3, have been spectroscopically identified at a level of 2-5% in martian dust. However, in spite of this observation, and a large number of climate studies that suggest 1 to several bars of CO2 should be sequestered in carbonate rocks, no outcrop-scale exposures of carbonate have been detected anywhere on Mars to date. To address one hypothesis for this long-standing puzzle, the effect of ultraviolet (UV) light on the stability of calcium carbonate in a simulated martian atmosphere was experimentally investigated. Using 13C-labeled calcite, we found no experimental evidence of the UV photodecomposition of calcium carbonate in a simulated martian atmosphere. Extrapolating the lower limit of detection of our experimental system to an upper limit of carbonate decomposition on Mars yields a quantum efficiency of 3.5 x 10(-8) molecules/photon over the wavelength interval of 190-390 nm and a maximum UV photodecomposition rate of 1.2 x 10(-13) kg m(-2) s(-1) from a calcite surface. The maximum loss of bulk calcite due to this process would be 2.5 nm year(-1) (Mars year). However, calcite is expected to be thermodynamically stable on the surface of Mars, and potential UV photodecomposition reaction mechanisms indicate that, though calcium carbonate may decompose under vacuum, it would be stable in a CO2 atmosphere. Given the expected stability of carbonate on Mars and our inability to detect carbonate decomposition, we conclude that it is unlikely that the apparent absence of extensive carbonate deposits on the martian surface is due to UV photodecomposition in the current environment.


Assuntos
Carbonatos/química , Meio Ambiente Extraterreno/química , Marte , Carbonato de Cálcio/química , Carbonato de Cálcio/efeitos da radiação , Carbonatos/efeitos da radiação , Estabilidade de Medicamentos , Exobiologia , Fotoquímica , Fotólise , Termodinâmica , Raios Ultravioleta
2.
Environ Sci Technol ; 44(7): 2360-4, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20155929

RESUMO

In the past few years, it has become increasingly apparent that perchlorate (ClO(4)(-)) is present on all continents, except the polar regions where it had not yet been assessed, and that it may have a significant natural source. Here, we report on the discovery of perchlorate in soil and ice from several Antarctic Dry Valleys (ADVs) where concentrations reach up to 1100 microg/kg. In the driest ADV, perchlorate correlates with atmospherically deposited nitrate. Far from anthropogenic activity, ADV perchlorate provides unambiguous evidence that natural perchlorate is ubiquitous on Earth. The discovery has significant implications for the origin of perchlorate, its global biogeochemical interactions, and possible interactions with the polar ice sheets. The results support the hypotheses that perchlorate is produced globally and continuously in the Earth's atmosphere, that it typically accumulates in hyperarid areas, and that it does not build up in oceans or other wet environments most likely because of microbial reduction on a global scale.


Assuntos
Ecossistema , Percloratos/análise , Regiões Antárticas , Cloretos/análise , Gelo , Nitratos/análise , Solo/análise
3.
Astrobiology ; 8(3): 583-95, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18680409

RESUMO

The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission. The diverse and effective capabilities of Urey make it an integral part of the payload and will help to achieve a large portion of the mission's primary scientific objective: "to search for signs of past and present life on Mars." This instrument is named in honor of Harold Urey for his seminal contributions to the fields of cosmochemistry and the origin of life.


Assuntos
Meio Ambiente Extraterreno/química , Marte , Compostos Orgânicos/análise , Oxidantes/análise , Voo Espacial/instrumentação , Aminoácidos/química , Eletroforese Capilar , Fluorescamina/química , Procedimentos Analíticos em Microchip , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA