Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(10): e56279, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489735

RESUMO

To fuel accelerated proliferation, leukaemic cells undergo metabolic deregulation, which can result in specific nutrient dependencies. Here, we perform an amino acid drop-out screen and apply pre-clinical models of chronic phase chronic myeloid leukaemia (CML) to identify arginine as a nutrient essential for primary human CML cells. Analysis of the Microarray Innovations in Leukaemia (MILE) dataset uncovers reduced ASS1 levels in CML compared to most other leukaemia types. Stable isotope tracing reveals repressed activity of all urea cycle enzymes in patient-derived CML CD34+ cells, rendering them arginine auxotrophic. Thus, arginine deprivation completely blocks proliferation of CML CD34+ cells and induces significantly higher levels of apoptosis when compared to arginine-deprived cell lines. Similarly, primary CML cells, but not normal CD34+ samples, are particularly sensitive to treatment with the arginine-depleting enzyme, BCT-100, which induces apoptosis and reduces clonogenicity. Moreover, BCT-100 is highly efficacious in a patient-derived xenograft model, causing > 90% reduction in the number of human leukaemic stem cells (LSCs). These findings indicate arginine depletion to be a promising and novel strategy to eradicate therapy resistant LSCs.


Assuntos
Arginina , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Arginina/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Apoptose , Células-Tronco/metabolismo , Células-Tronco Neoplásicas/metabolismo
2.
Nat Commun ; 15(1): 1090, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316788

RESUMO

Macrophages are fundamental cells of the innate immune system that support normal haematopoiesis and play roles in both anti-cancer immunity and tumour progression. Here we use a chimeric mouse model of chronic myeloid leukaemia (CML) and human bone marrow (BM) derived macrophages to study the impact of the dysregulated BM microenvironment on bystander macrophages. Utilising single-cell RNA sequencing (scRNA-seq) of Philadelphia chromosome (Ph) negative macrophages we reveal unique subpopulations of immature macrophages residing in the CML BM microenvironment. CML exposed macrophages separate from their normal counterparts by reduced expression of the surface marker CD36, which significantly reduces clearance of apoptotic cells. We uncover aberrant production of CML-secreted factors, including the immune modulatory protein lactotransferrin (LTF), that suppresses efferocytosis, phagocytosis, and CD36 surface expression in BM macrophages, indicating that the elevated secretion of LTF is, at least partially responsible for the supressed clearance function of Ph- macrophages.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Animais , Camundongos , Humanos , Medula Óssea/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide/patologia , Cromossomo Filadélfia , Macrófagos/metabolismo , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Microambiente Tumoral/genética
3.
Neurooncol Adv ; 5(1): vdad067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334166

RESUMO

Background: Infiltration of glioblastoma (GBM) throughout the brain leads to its inevitable recurrence following standard-of-care treatments, such as surgical resection, chemo-, and radiotherapy. A deeper understanding of the mechanisms invoked by GBM to infiltrate the brain is needed to develop approaches to contain the disease and reduce recurrence. The aim of this study was to discover mechanisms through which extracellular vesicles (EVs) released by GBM influence the brain microenvironment to facilitate infiltration, and to determine how altered extracellular matrix (ECM) deposition by glial cells might contribute to this. Methods: CRISPR was used to delete genes, previously established to drive carcinoma invasiveness and EV production, from patient-derived primary and GBM cell lines. We purified and characterized EVs released by these cells, assessed their capacity to foster pro-migratory microenvironments in mouse brain slices, and evaluated the contribution made by astrocyte-derived ECM to this. Finally, we determined how CRISPR-mediated deletion of genes, which we had found to control EV-mediated communication between GBM cells and astrocytes, influenced GBM infiltration when orthotopically injected into CD1-nude mice. Results: GBM cells expressing a p53 mutant (p53R273H) with established pro-invasive gain-of-function release EVs containing a sialomucin, podocalyxin (PODXL), which encourages astrocytes to deposit ECM with increased levels of hyaluronic acid (HA). This HA-rich ECM, in turn, promotes migration of GBM cells. Consistently, CRISPR-mediated deletion of PODXL opposes infiltration of GBM in vivo. Conclusions: This work describes several key components of an EV-mediated mechanism though which GBM cells educate astrocytes to support infiltration of the surrounding healthy brain tissue.

4.
Nat Commun ; 12(1): 6572, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772930

RESUMO

Damaged or superfluous cells are typically eliminated by apoptosis. Although apoptosis is a cell-autonomous process, apoptotic cells communicate with their environment in different ways. Here we describe a mechanism whereby cells under apoptotic stress can promote survival of neighbouring cells. We find that upon apoptotic stress, cells release the growth factor FGF2, leading to MEK-ERK-dependent transcriptional upregulation of pro-survival BCL-2 proteins in a non-cell autonomous manner. This transient upregulation of pro-survival BCL-2 proteins protects neighbouring cells from apoptosis. Accordingly, we find in certain cancer types a correlation between FGF-signalling, BCL-2 expression and worse prognosis. In vivo, upregulation of MCL-1 occurs in an FGF-dependent manner during skin repair, which regulates healing dynamics. Importantly, either co-treatment with FGF-receptor inhibitors or removal of apoptotic stress restores apoptotic sensitivity to cytotoxic therapy and delays wound healing. These data reveal a pathway by which cells under apoptotic stress can increase resistance to cell death in surrounding cells. Beyond mediating cytotoxic drug resistance, this process also provides a potential link between tissue damage and repair.


Assuntos
Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação para Cima/efeitos dos fármacos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA