Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
BMC Neurosci ; 25(1): 5, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291397

RESUMO

BACKGROUND: The cochlear sympathetic system plays a key role in auditory function and susceptibility to noise-induced hearing loss (NIHL). The formation of reactive oxygen species (ROS) is a well-documented process in NIHL. In this study, we aimed at investigating the effects of a superior cervical ganglionectomy (SCGx) on NIHL in Sprague-Dawley rats. METHODS: We explored the effects of unilateral and bilateral Superior Cervical Ganglion (SCG) ablation in the eight-ten weeks old Sprague-Dawley rats of both sexes on NIHL. Auditory function was evaluated by auditory brainstem response (ABR) testing and Distortion product otoacoustic emissions (DPOAEs). Outer hair cells (OHCs) counts and the expression of α2A-adrenergic receptor (AR) in the rat cochlea using immunofluorescence analysis. Cells culture and treatment, CCK-8 assay, Flow cytometry staining and analysis, and western blotting were to explore the mechanisms of SCG fibers may have a protective role in NIHL. RESULTS: We found that neither bilateral nor unilateral SCGx protected the cochlea against noise exposure. In HEI-OC1 cells, H2O2-induced oxidative damage and cell death were inhibited by the application of norepinephrine (NE). NE may prevent ROS-induced oxidative stress in OHCs and NIHL through the α2A-AR. CONCLUSION: These results demonstrated that sympathetic innervation mildly affected cochlear susceptibility to acoustic trauma by reducing oxidative damage in OHCs through the α2A-AR. NE may be a potential therapeutic strategy for NIHL prevention.


Assuntos
Perda Auditiva Provocada por Ruído , Ratos , Masculino , Feminino , Animais , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Células Ciliadas Auditivas Externas , Espécies Reativas de Oxigênio , Ratos Sprague-Dawley , Norepinefrina , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/uso terapêutico , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico , Receptores Adrenérgicos/uso terapêutico
2.
Cell Commun Signal ; 22(1): 227, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610001

RESUMO

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors of the head and neck. Vasculogenic mimicry (VM) is crucial for tumor growth and metastasis and refers to the formation of fluid channels by invasive tumor cells rather than endothelial cells. However, the regulatory mechanisms underlying VM during the malignant progression of LSCC remain largely unknown. METHODS: Gene expression and clinical data for LSCC were obtained from the TCGA and Gene GEO (GSE27020) databases. A risk prediction model associated with VM was established using LASSO and Cox regression analyses. Based on their risk scores, patients with LSCC were categorized into high- and low-risk groups. The disparities in immune infiltration, tumor mutational burden (TMB), and functional enrichment between these two groups were examined. The core genes in LSCC were identified using the machine learning (SVM-RFE) and WGCNA algorithms. Subsequently, the involvement of bone morphogenetic protein 2 (BMP2) in VM and metastasis was investigated both in vitro and in vivo. To elucidate the downstream signaling pathways regulated by BMP2, western blotting was performed. Additionally, ChIP experiments were employed to identify the key transcription factors responsible for modulating the expression of BMP2. RESULTS: We established a new precise prognostic model for LSCC related to VM based on three genes: BMP2, EPO, and AGPS. The ROC curves from both TCGA and GSE27020 validation cohorts demonstrated precision survival prediction capabilities, with the nomogram showing some net clinical benefit. Multiple algorithm analyses indicated BMP2 as a potential core gene. Further experiments suggested that BMP2 promotes VM and metastasis in LSCC. The malignant progression of LSCC is promoted by BMP2 via the activation of the PI3K-AKT signaling pathway, with the high expression of BMP2 in LSCC resulting from its transcriptional activation by runt-related transcription factor 1 (RUNX1). CONCLUSION: BMP2 predicts poor prognosis in LSCC, promotes LSCC VM and metastasis through the PI3K-AKT signaling pathway, and is transcriptionally regulated by RUNX1. BMP2 may be a novel, precise, diagnostic, and therapeutic biomarker of LSCC.


Assuntos
Proteína Morfogenética Óssea 2 , Neoplasias de Cabeça e Pescoço , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core , Células Endoteliais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Transdução de Sinais
3.
Biochem Biophys Res Commun ; 632: 69-75, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36206596

RESUMO

Autosomal recessive nonsyndromic auditory neuropathy is attributed to a genetic etiology. We identified a compound heterozygous missense variant, c.G736A (p.G246S) and c.C2954T (p.T985 M) in TNN of affected patients in a pedigree via candidate gene screening and exome sequencing. To determine the genetic etiology of deafness in the pedigree with a heterozygous missense variant in the gene TNN encoding tenascin-W associated with autosomal recessive nonsyndromic auditory neuropathy, the cochlear expression of tenascin-W was evaluated at mRNA and protein levels in mice, and Tnn knock out mice were generated and utilized to study the function of Tnn in the auditory system. Immunofluorescence stainings showed that tenascin-W was mainly expressed in the somatic cytoplasm of spiral ganglion neurons of mice. Homozygous Tnn knockout was lethal in mice, whereas Tnn heterozygous mice showed decreases in spiral ganglion neuron density and progressive hearing loss. We demonstrate that tenascin-W is expressed in the murine cochleae and is essential for the development of spiral ganglion neurons. An abnormal expression of tenascin-W can influence the development and function of SGNs and affect the function of the auditory system.


Assuntos
Perda Auditiva Central , Tenascina , Animais , Camundongos , Perda Auditiva Central/genética , Perda Auditiva Central/metabolismo , RNA Mensageiro/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Tenascina/genética , Tenascina/metabolismo , Humanos
4.
Audiol Neurootol ; 27(2): 93-103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34407531

RESUMO

BACKGROUND: The auditory system processes how we hear and understand sounds within the environment. It comprises both peripheral and central structures. Sympathetic nervous system projections are present throughout the auditory system. The function of sympathetic fibers in the cochlea has not been studied extensively due to the limited number of direct projections in the auditory system. Nevertheless, research on adrenergic and noradrenergic regulation of the cochlea and central auditory system is growing. With the rapid development of neuroscience, auditory central regulation is an extant topic of focus in research on hearing. SUMMARY: As such, understanding sympathetic nervous system regulation of auditory function is a growing topic of interest. Herein, we review the distribution and putative physiological and pathological roles of sympathetic nervous system projections in hearing. KEY MESSAGES: In the peripheral auditory system, the sympathetic nervous system regulates cochlear blood flow, modulates cochlear efferent fibers, affects hair cells, and influences the habenula region. In central auditory pathways, norepinephrine is essential for plasticity in the auditory cortex and affects auditory cortex activity. In pathological states, the sympathetic nervous system is associated with many hearing disorders. The mechanisms and pathways of sympathetic nervous system modulation of auditory function is still valuable for us to research and discuss.


Assuntos
Cóclea , Audição , Vias Auditivas , Cóclea/fisiologia , Células Ciliadas Auditivas , Audição/fisiologia , Sistema Nervoso Simpático
5.
ORL J Otorhinolaryngol Relat Spec ; 84(5): 417-424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35078197

RESUMO

INTRODUCTION: CHARGE syndrome (CS, OMIM 214800) is a rare genetic disease characterized by multiple congenital abnormalities, including coloboma, heart defect, atresia of the choanae, retardation of development, genital anomalies, and ear anomalies/deafness. The syndrome is mainly caused by a heterozygous variant in the chromodomain helicase DNA-binding protein 7 (CHD7) gene that encodes the CHD7 protein, involved in the ATP-dependent remodeling of chromatin. METHODS: In this study, the next-generation sequencing targeted panel was used to detect a de novo variant c.3523-2A>G in the CHD7 gene in a patient with severe CS, congenital heart disease, left coloboma of the choroid, cryptorchidism, and congenital deafness. The Sanger sequencing confirmed the variant and clarified it as de novo variant by short tandem repeat analysis in the patient family. We analyzed the effect of a variant by Minigene assay to evaluate the pathogenicity of the variant. RESULTS: In summary, cDNA analysis confirmed that c.3523-2A>G variant activates a cryptic splice site, resulting in 172 base pair missing in exon 15, leading to the premature truncation of the CHD7 protein (p.V1175Afs*11). CONCLUSION: The present study functionally characterized the novel c.3523-2A>G variant in CHD7, providing further confirmatory evidence that it is associated with CS.


Assuntos
Síndrome CHARGE , Coloboma , Surdez , Trifosfato de Adenosina , Síndrome CHARGE/diagnóstico , Síndrome CHARGE/genética , China , Cromatina , Coloboma/genética , DNA Helicases/genética , DNA Complementar , Proteínas de Ligação a DNA/genética , Surdez/genética , Humanos , Masculino , Mutação , Sítios de Splice de RNA
6.
Exp Mol Pathol ; 118: 104591, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285209

RESUMO

Allergic rhinitis (AR) is tightly associated with type 2 inflammation. SFRP5 combined with WNT5A mainly inhibits chronic inflammatory response, atherosclerosis, and other metabolic disorders. However, the effect of SFRP5/WNT5A axis on recombinant human interleukin-13 (rhIL-13)-induced inflammation has not been studied. In this study, we aimed to investigate whether secreted frizzled-related protein 5 (SFRP5) could modulate the production of cytokines relevant to eosinophil infiltration and mucin secretion through blocking the activation of Wnt family 5A (WNT5A) signaling pathway. A mouse model of AR demonstrated low expression of SFRP5 and high expression of WNT5A, and indicated that the number of eosinophil and goblet cells was increased, concomitant with elevated IL-13, colony stimulating factor 2 (CSF2), chemokine ligand 11 (CCL11), Mucin 4, and Mucin 5AC levels. Furthermore, lentivirus-SFRP5 overexpression up-regulated the expression of SFRP5 but down-regulated WNT5A level, and inhibited the activation of JNK pathway via decreasing p-JNK1/2 (Thr183/Tyr185) and p-c-Jun (Ser73) protein expressions in rhIL-13-treated human nasal epithelial cells (HNEpCs). Noticeably, SFRP5 overexpression markedly reduced rhIL-13-induced inflammatory protein and mucin generation through lowered CSF2, CCL11, Mucin 4, as well as Mucin 5AC levels. Taken together, these findings confirmed the regulatory role of SFRP5/WNT5A axis in rhIL-13-mediated inflammatory response in HNEpCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Interleucina-13/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mucinas/metabolismo , Mucosa Nasal/patologia , Rinite Alérgica/patologia , Proteína Wnt-5a/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Rinite Alérgica/tratamento farmacológico , Rinite Alérgica/metabolismo , Proteína Wnt-5a/genética
7.
BMC Surg ; 21(1): 306, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217239

RESUMO

BACKGROUND: First branchial cleft anomaly (FBCA) is a rare congenital defect that arises due to incomplete closure of the ventral portion of the first and second branchial arches. There are variable complex clinical manifestations for patients with FBCA, which are prone to misdiagnosis and inadequate treatment. FBCAs usually involve the facial nerve with a consequent increased risk of facial nerve damage. Here, we present an unusual case of FBCA presenting with two preauricular pits in association with an abnormal maxillofacial cyst. CASE PRESENTATION: A 10-month-old girl presented to our department due to recurrent maxillofacial infections accompanied by swelling or abscess of the left cheek and purulent discharge from the preauricular pit for 4 months. A 3D-computed tomography (CT) fistulogram and magnetic resonance imaging (MRI) revealed two conjunctive tract lesions: one tract arose from the skin surface anteroinferior to the external auditory canal (EAC), through the deep lobe of the left parotid, and anteriorly extended to the left masseter; the other extended from the superficial lobe of the left parotid to the intertragic notch. After the maxillofacial infection was controlled by intravenous antibiotic administration, surgery was performed. Intraoperative tools, such as facial nerve monitors, microscopes, and methylene blue dyes, were used to facilitate the complete dissection and protection of the facial nerve. On follow-up over one year, the patient recovered well without facial palsy or recurrence. CONCLUSION: FBCA with maxillofacial cysts is rare and prone to misdiagnosis. Physicians should pay attention to this anatomic variant of FBCA with the fistula track located deep inside the facial nerve and projected medially to the masseter.


Assuntos
Região Branquial , Fístula , Meato Acústico Externo , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia
8.
Neural Plast ; 2020: 8831735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193754

RESUMO

The spiral ganglion neurons (SGNs) are the primary afferent neurons in the spiral ganglion (SG), while their degeneration or loss would cause sensorineural hearing loss. As a cardiac-derived hormone, atrial natriuretic peptide (ANP) plays a critical role in cardiovascular homeostasis through binding to its functional receptors (NPR-A and NPR-C). ANP and its receptors are widely expressed in the mammalian nervous system where they could be implicated in the regulation of multiple neural functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors in the inner ear, their presence within the cochlear SG and their regulatory roles during auditory neurotransmission and development remain largely unknown. Based on our previous findings, we investigated the expression patterns of ANP and its receptors in the cochlear SG and dissociated SGNs and determined the influence of ANP on neurite outgrowth in vitro by using organotypic SG explants and dissociated SGN cultures from postnatal rats. We have demonstrated that ANP and its receptors are expressed in neurons within the cochlear SG of postnatal rat, while ANP may promote neurite outgrowth of SGNs via the NPR-A/cGMP/PKG pathway in a dose-dependent manner. These results indicate that ANP would play a role in normal neuritogenesis of SGN during cochlear development and represents a potential therapeutic candidate to enhance regeneration and regrowth of SGN neurites.


Assuntos
Fator Natriurético Atrial/fisiologia , GMP Cíclico/fisiologia , Neuritos/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Animais , Células Cultivadas , Ratos Sprague-Dawley , Gânglio Espiral da Cóclea/citologia
9.
J Cell Biochem ; 120(5): 8492-8498, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30506952

RESUMO

Long noncoding RNAs (lncRNA) snaR is a characterized oncogenic lncRNA in triple negative breast cancer and ovarian cancer, while its role in other human diseases is unknown. In the present study, we found that plasma levels of snaR were upregulated in patients with laryngeal squamous cell carcinoma (LSCC) than in healthy controls. Plasma levels of snaR increased with increase in AJCC stages. Follow-up study showed that high plasma levels of snaR were correlated with poor overall survival. Plasma levels of snaR were positively correlated with transforming growth factor beta (TGF-ß1) in patients with LSCC but not in healthy controls. Overexpression of snaR resulted in upregulation of TGF-ß1 in cells of human LSCC cell lines, while exogenous TGF-ß1 treatment showed no significant effect on snaR expression. snaR overexpression and exogenous TGF-ß1 treatment promoted LSCC cell proliferation, migration, and invasion. In addition, TGF-ß inhibitor partially reduced the enhancing effects of snaR overexpression on LSCC cell proliferation, migration, and invasion. Therefore, overexpression of lncRNA snaR is correlated with progression and predicts poor survival of LSCC and the mechanism of its actions is likely related to TGF-ß1.

10.
Biochem Biophys Res Commun ; 500(2): 110-116, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29571735

RESUMO

In hearing loss induced by aminoglycoside antibiotics, the outer hair cells (OHCs) in the basal turn are always more susceptible than OHCs in the apical turn, while the underlying mechanisms remain unknown. In this study, we reported that NAPDH oxidase 2 (NOX2) played an important role in the OHCs damage preferentially in the basal turn. Normally, NOX2 was evenly expressed in OHCs among different turns, at a relatively low level. However, after neomycin treatment, NOX2 was dominantly induced in OHCs in the basal turn. In vivo and in vitro studies demonstrated that inhibition of NOX2 significantly alleviated neomycin-induced OHCs damages, as seen from both the cleaved caspase-3 and TUNEL staining. Moreover, gp91 ds-tat delivery and DHE staining results showed that NOX2-derived ROS was responsible for neomycin ototoxicity. Taken together, our study shows that regional up-expression of NOX2 and subsequent increase of ROS in OHCs of the basal turn is an important factor contributing to the vulnerability of OHCs there, which should shed light on the prevention of hearing loss induced by aminoglycoside antibiotics.


Assuntos
Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patologia , NADPH Oxidase 2/metabolismo , Neomicina/efeitos adversos , Regulação para Cima , Animais , Apoptose/efeitos dos fármacos , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Perda Auditiva/patologia , NADPH Oxidase 2/antagonistas & inibidores , Neomicina/administração & dosagem , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Neural Plast ; 2018: 7502648, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123255

RESUMO

The discovery that an apparent forward-propagating otoacoustic emission (OAE) induced basilar membrane vibration has created a serious debate in the field of cochlear mechanics. The traditional theory predicts that OAE will propagate to the ear canal via a backward traveling wave on the basilar membrane, while the opponent theory proposed that the OAE will reach the ear canal via a compression wave. Although accepted by most people, the basic phenomenon of the backward traveling wave theory has not been experimentally demonstrated. In this study, for the first time, we showed the backward traveling wave by measuring the phase spectra of the basilar membrane vibration at multiple longitudinal locations of the basal turn of the cochlea. A local vibration source with a unique and precise location on the cochlear partition was created to avoid the ambiguity of the vibration source in most previous studies. We also measured the vibration pattern at different places of a mechanical cochlear model. A slow backward traveling wave pattern was demonstrated by the time-domain sequence of the measured data. In addition to the wave propagation study, a transmission line mathematical model was used to interpret why no tonotopicity was observed in the backward traveling wave.


Assuntos
Cóclea/fisiologia , Emissões Otoacústicas Espontâneas , Animais , Fenômenos Biomecânicos , Cobaias , Modelos Biológicos , Processamento de Sinais Assistido por Computador , Vibração
12.
J Neurosci ; 34(27): 9051-8, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24990925

RESUMO

The detection of sound by the mammalian hearing organ involves a complex mechanical interplay among different cell types. The inner hair cells, which are the primary sensory receptors, are stimulated by the structural vibrations of the entire organ of Corti. The outer hair cells are thought to modulate these sound-evoked vibrations to enhance hearing sensitivity and frequency resolution, but it remains unclear whether other structures also contribute to frequency tuning. In the current study, sound-evoked vibrations were measured at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate the presence of multiple vibration modes as well as significant differences in frequency tuning and response phase among different cell types. In particular, the frequency tuning at the inner hair cells differs from other cell types, causing the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea compared with the outer hair cells. These observations show that additional processing and filtering of acoustic signals occur within the organ of Corti before inner hair cell excitation, representing a departure from established theories.


Assuntos
Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Audição/fisiologia , Estimulação Acústica , Animais , Vias Auditivas/fisiologia , Membrana Basilar/fisiologia , Feminino , Cobaias , Masculino , Modelos Neurológicos , Tomografia de Coerência Óptica , Vibração
13.
Int J Pediatr Otorhinolaryngol ; 176: 111802, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041987

RESUMO

OBJECTIVE: To compare the differences in wideband absorbance and the resonance frequency (RF) between patients with inner ear malformations and normal control, and to explore the auditory diagnostic value of wideband acoustic immittance (WAI). METHODS: A total of 38 patients (59 ears) with enlarged vestibular aqueduct (EVA), 13 patients (14 ears) with incomplete partition type I (IP-I) and 13 patients (26 ears) with incomplete partition type II (IP-II) were included. 50 normal control (100 ears). All subjects underwent WAI tests to compare the absorbance configuration and resonance frequency. RESULTS: All the group showed lower absorbance at ambient pressure than at peak pressure in certain frequencies under 2000Hz. Under 1000Hz, the absorbance of EVA was higher than that of other groups. The average absorbance and highest absorbance of IP-I were the lowest(P<0.05). However, IP-II and normal group had similarity on some characteristics. The three IEM groups mainly different at low and high frequencies, but not at medium frequencies. The highest absorbance of all the groups were appeared around 3000Hz. The RF of all the groups from low to high were EVA<IP-II<normal control<IP-I, and the lowest was EVA(P<0.05). CONCLUSION: Inner ear malformations can affect energy absorbance and RF. WAI is sensitive and non-invasive to provide useful information about inner ear status and facilitate detection of ear pathology.


Assuntos
Orelha Interna , Humanos , Acústica , Testes de Impedância Acústica , Orelha Média
14.
Ear Nose Throat J ; : 1455613241234249, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444148

RESUMO

Choanal polyps belong to a special type of nasal polyps, which are quite uncommon if originating from the nasal septum, especially those with osseous metaplasia. In this article, we report the case of a 63-year-old male patient with persistent nasal obstruction on the right side. An irregular light yellow lobulated mass with smooth surface could be visualized in the nasal cavity through nasal endoscopy, arising from the right nasal septum and extending to the nasopharynx. Computed tomography scan showed a large soft tissue shadow of the nasal meatus, with ossified structure in the center. Histopathological biopsy revealed nasopharyngeal mucositis. The patient underwent functional endoscopic sinus surgery and the polypoidal mass sent for histopathological examination proved to be choanal polyps.

15.
Toxicol In Vitro ; 99: 105852, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38789064

RESUMO

Cisplatin is an effective chemotherapeutic agent; however, ototoxicity is one of its negative effects that greatly limits the use of cisplatin in clinical settings. Previous research has shown that the most important process cisplatin damage to inner ear cells, such as hair cells (HCs), is the excessive production and accumulation of ROS. Schisandrin B (SchB), is a low-toxicity, inexpensive, naturally occurring antioxidant with a variety of pharmacological effects. Therefore, the potential antioxidant effects of SchB may be useful for cisplatin ototoxicity treatment. In this study, the effects of SchB on cochlear hair cell viability, ROS levels, and expression of apoptosis-related molecules were evaluated by CCK-8, immunofluorescence, flow cytometry, and qRT-PCR, as well as auditory brainstem response (ABR) and dysmorphic product otoacoustic emission (DPOAE) tests to assess the effects on inner ear function. The results showed that SchB treatment increased cell survival, prevented apoptosis, and reduced cisplatin-induced ROS formation. SchB treatment reduced the loss of cochlear HCs caused by cisplatin in exosome culture. In addition, SchB treatment attenuated cisplatin-induced hearing loss and HC loss in mice. This study demonstrates the ability of SchB to inhibit cochlear hair cell apoptosis and ROS generation and shows its potential therapeutic effect on cisplatin ototoxicity.

16.
Gene Expr Patterns ; 51: 119356, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38432189

RESUMO

It can be observed from aminoglycoside-induced hair cell damage that the cochlea basal turn is more susceptible to trauma than the apex. Drug-induced hearing loss is closely related to oxidative damage. The basilar membrane directly exposed to these ototoxic drugs exhibits differences in damage, indicating that there is an inherent difference in the sensitivity to oxidative damage from the apex to the base of the cochlea. It has been reported that the morphology and characteristics of the cochlea vary from the apex to the base. Therefore, we investigated oxidative stress-related gene expression profiles in the apical, middle, and basal turns of the cochlea. The Oxidative Stress RT2 Profiler™ PCR Array revealed that three of the 84 genes (Mb, Mpo, and Ncf1) were upregulated in the middle turn compared to their level in the apical turn. Moreover, eight genes (Mb, Duox1, Ncf1, Ngb, Fmo2, Gpx3, Mpo, and Gstk1) were upregulated in the basal turn compared to their level in the apical turn. The qPCR verification data were similar to that of the PCR Array. We found that MPO was expressed in the rat cochlea and protected against gentamicin-induced hair cell death. This study summarized the data for the gradient of expression of oxidative stress-related genes in the cochlea and found potential candidate targets for prevention of ototoxic deafness, which may provide new insights for cochlear pathology.


Assuntos
Cóclea , Estresse Oxidativo , Ratos , Animais , Cóclea/metabolismo , Cóclea/patologia , Perfilação da Expressão Gênica , Morte Celular , Transcriptoma
17.
Neural Regen Res ; 19(5): 1119-1125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862217

RESUMO

The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate (ATP) by supporting cells in the Kölliker's organ. However, the mechanisms responsible for initiating spontaneous ATP release have not been determined. Our previous study revealed that telomerase reverse transcriptase (TERT) is expressed in the basilar membrane during the first postnatal week. Its role in cochlear development remains unclear. In this study, we investigated the expression and role of TERT in postnatal cochlea supporting cells. Our results revealed that in postnatal cochlear Kölliker's organ supporting cells, TERT shifts from the nucleus into the cytoplasm over time. We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo. Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis, suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions. We observed increased ATP synthesis, release and activation of purine signaling systems in supporting cells during the first 10 postnatal days. The phenomenon that TERT translocation coincided with changes in ATP synthesis, release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system. Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.

18.
Artigo em Zh | MEDLINE | ID: mdl-38686473

RESUMO

Objective:To explore the clinical manifestations and imaging characteristics, and to clarify the imaging value in the diagnosis of facial nerve schwannomas. Methods:Retrospectively analyze the data of 23 patients with facial nerve schwannomas confirmed by surgery and pathology in the Department of Otorhinolaryngology of the First Affiliated Hospital of the Air Force Military Medical University from September 2020 to September 2022, including 8 males and 15 females, aged 18-66 years old. Summarize and analyze their clinical symptoms, specialized examinations, and imaging findings. Results:The clinical manifestations were facial nerve paralysis in 15 cases(2 cases of HB Ⅳ, 6 cases of HB Ⅴ, 7 cases of HB Ⅵ), hearing loss in 14 cases(5 cases of conductive deafness, 2 cases of mixed deafness, and 7 cases of severe sensorineural hearing loss), 8 cases tinnitus, 7 cases ear pain, 4 cases dizziness, 4 cases headache, 2 cases ear pus, and parotid gland tumors in 6 cases presenting as local masses. Endoscopic examination revealed 8 cases of external ear canal tumors and 3 cases of intratympanic tumors. Combining temporal bone HRCT, MRI enhanced scanning, and CPR imaging techniques, 1 case involved the internal auditory canal segment, 2 cases in the tympanic segment, 6 cases in the parotid gland area. A total of 14 cases involved two or more segments of the internal auditory canal segment, the labyrinthine segment, geniculate ganglion, the tympanic segment, and the mastoid segment. When the tumors were large, adjacent structures were involved. It was found that 8 cases invaded the external auditory canal and tympanic cavity, ossicles were displaced or bony destruction; 3 cases invaded the jugular foramen area, and 1 case grew to the middle cranial fossa region with temporal lobe brain parenchymal compression. Conclusion:The clinical manifestations of facial nerve schwannomas are diverse. The combination of various imaging techniques will be conducive to topical and qualitative diagnosis and provide an important basis for treatment strategies.


Assuntos
Imageamento por Ressonância Magnética , Neurilemoma , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Neurilemoma/diagnóstico por imagem , Idoso , Adolescente , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Estudos Retrospectivos , Nervo Facial/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Neoplasias dos Nervos Cranianos/diagnóstico por imagem , Neoplasias dos Nervos Cranianos/diagnóstico
19.
Eur J Histochem ; 67(3)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548252

RESUMO

Lots of adrenergic receptors (ARs) are widely present across the auditory pathways and are positioned to affect auditory and vestibular functions. However, noradrenergic regulation in the cochlea has not been well characterized. In this study, a rat model of noise-induced hearing loss was developed to investigate the expression of α2A-adrenergic receptor (AR) after acoustic trauma, then, we investigated the expression of α2A-AR in the developing rat cochlea using immunofluorescence, qRT-PCR, and Western blotting. We found that the expression of α2A-AR significantly increased in rats exposed to noise compared with controls. Immunofluorescence analysis demonstrated that α2A-AR is localized on hair cells (HCs), spiral ganglion neurons (SGNs), and the stria vascularis (SV) in the postnatal developing cochlea from post-natal day (P) 0 to P28. Furthermore, we observed α2A-AR mRNA reached a maximum level at P14 and P28 when compared with P0, while no significant differences in α2A-AR protein levels at the various stages when compared with P0. This study provides direct evidence for the expression of α2A-AR in HCs, SGNs, and the SV of the cochlea, indicating that norepinephrine might play a vital role in hearing function within the cochlea through α2A-AR.


Assuntos
Cóclea , Receptores Adrenérgicos alfa 2 , Gânglio Espiral da Cóclea , Animais , Ratos , Cóclea/metabolismo , Norepinefrina , Ratos Sprague-Dawley , Gânglio Espiral da Cóclea/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo
20.
Neurosci Lett ; 792: 136942, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328292

RESUMO

Neuregulin-1 (NRG1)/erythroblastic leukaemia viral oncogene homologues 2 (ErbB2) pathway had been implicated in promoting differentiation and suppressing apoptosis of neuronal stem cells (NSCs) isolated from cochlear nucleus. In the current study, we aimed at determining the effects of NRG1/ErbB2 on mitochondrial (mt) function of NSCs. As expected, NRG1 increased the expression of mitofusin (Mfn) 1 and Mfn2 and decreased the expression of mitochondrial fission protein 1 (Fis1) and dynamin-related protein 1 (Drp1). However, after ErbB2 knockout, Mfn1 and Mfn2 expression decreased while Fis1 and Drp1 increased. Moreover, the increased mtDNA copy number and intracellular ATP level, elevated ATPase activities as well as decreased lactate production induced by NRG1 were partially reversed by ErbB2 knockout. Additionally, NRG1 treatment increased the activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and upregulated the protein expression of catalase, manganese superoxide dismutase (MnSOD), peroxisome proliferator-activated receptor-γ coactlvator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1) and transcription factor A, mitochondrial (TFAM), which were also reversed by ErbB2 knockout. Furthermore, PGC-1α overexpression partially reversed the above effects of ErbB2 knockout. In conclusion, these findings suggest that the promotion of mitochondrial function of NRG1/ErbB2 axis is at least in part mediated by PGC-1α in NSCs from cochlear nucleus.


Assuntos
Núcleo Coclear , Células-Tronco Neurais , Antioxidantes/farmacologia , Catalase/metabolismo , Neuregulina-1/metabolismo , Núcleo Coclear/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA