Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 123: 104588, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038893

RESUMO

Aspergillus flavus infects important crops and produces carcinogenic aflatoxins, posing a serious threat to food safety and human health. Biochemical analysis and RNA-seq were performed to investigate the effects and mechanisms of piperitone on A. flavus growth and aflatoxin B1 biosynthesis. Piperitone significantly inhibited the growth of A. flavus, AFB1 production, and its pathogenicity on peanuts and corn flour. Differentially expressed genes (DEGs) associated with the synthesis of chitin, glucan, and ergosterol were markedly down-regulated, and the ergosterol content was reduced, resulting in a disruption in the integrity of the cell wall and cell membrane. Moreover, antioxidant genes were down-regulated, the correspondingly activities of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase were reduced, and levels of superoxide anion and hydrogen peroxide were increased, leading to a burst of reactive oxygen species (ROS). Accompanied by ROS accumulation, DNA fragmentation and cell autophagy were observed, and 16 aflatoxin cluster genes were down-regulated. Overall, piperitone disrupts the integrity of the cell wall and cell membrane, triggers the accumulation of ROS, causes DNA fragmentation and cell autophagy, ultimately leading to defective growth and impaired AFB1 biosynthesis.


Assuntos
Aflatoxina B1 , Antifúngicos , Aspergillus flavus , Espécies Reativas de Oxigênio , Zea mays , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Zea mays/microbiologia , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Arachis/microbiologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo
2.
J Phys Chem A ; 127(47): 9974-9984, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37967028

RESUMO

Characterizing the electronic structure of the iron-sulfur clusters in nitrogenase is necessary to understand their role in the nitrogen fixation process. One challenging task is to determine the protonation state of the intermediates in the nitrogen fixing cycle. Here, we use a dimeric iron-sulfur model to study relative energies of protonation at C, S, or Fe. Using a composite method based on coupled cluster and density matrix renormalization group energetics, we converge the relative energies of four protonated configurations with respect to basis set and correlation level. We find that accurate relative energies require large basis sets as well as a proper treatment of multireference and relativistic effects. We have also tested ten density functional approximations for these systems. Most of them give large errors in their relative energies. The best performing functional in this system is B3LYP, which gives mean absolute and maximum deviations of only 10 and 13 kJ/mol with respect to our correlated wave function estimates, respectively, comparable to the uncertainty in our correlated estimates. Our work provides benchmark results for the calibration of new approximate electronic structure methods and density functionals for these problems.

3.
Appl Microbiol Biotechnol ; 107(7-8): 2501-2514, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36809388

RESUMO

Aspergillus niger produces genotoxic and carcinogenic ochratoxin A (OTA) that severely threatens human and animal health. Transcription factor Azf1 is essential in regulating fungal cell development and primary metabolism. However, its effect and mechanism on secondary metabolism are unclear. Here, we characterized and deleted a Azf1 homolog gene, An15g00120 (AnAzf1), in A. niger, which completely blocked OTA production, and repressed the OTA cluster genes, p450, nrps, hal, and bzip at the transcriptional level. The results indicated that AnAzf1 was a positive regulator of OTA biosynthesis. Transcriptome sequencing results showed that the AnAzf1 deletion significantly upregulated antioxidant genes and downregulated oxidative phosphorylation genes. Enzymes involved in reactive oxygen species (ROS) scavenging, including catalase (CAT) and peroxidase (POD) were increased, and the corresponding ROS levels were decreased. Upregulation of genes (cat, catA, hog1, and gfd) in the MAPK pathway and downregulation of genes in iron homeostasis were associated with decreased ROS levels, linking the altered MAPK pathway and iron homeostasis to lower ROS levels caused by AnAzf1 deletion. Additionally, enzymes including complex I (NADH-ubiquinone oxidoreductase), and complex V (ATP synthase), as well as ATP levels, were significantly decreased, indicating impaired oxidative phosphorylation caused by the AnAzf1-deletion. During lower ROS levels and impaired oxidative phosphorylation, OTA was not produced in ∆AnAzf1. Together, these results strongly suggested that AnAzf1 deletion blocked OTA production in A. niger by a synergistic interference of ROS accumulation and oxidative phosphorylation. KEY POINTS: • AnAzf1 positively regulated OTA biosynthesis in A. niger. • Deletion of AnAzf1 decreased ROS levels and impaired oxidative phosphorylation. • An altered MAPK pathway and iron homeostasis were associated with lower ROS levels.


Assuntos
Aspergillus niger , Ocratoxinas , Humanos , Aspergillus niger/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Metabolismo Secundário , Ocratoxinas/metabolismo , Ferro/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Appl Microbiol Biotechnol ; 107(1): 341-354, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36477927

RESUMO

The prevention of fungal proliferation in postharvest grains is critical for maintaining grain quality and reducing mycotoxin contamination. Fumigation with natural gaseous fungicides is a promising and sustainable approach to protect grains from fungal spoilage. In this study, the antifungal activities of (E)-2-alkenals (C5-C10) on Aspergillus flavus were tested in the vapor phase, and (E)-2-heptenal showed the highest antifungal activity against A. flavus. (E)-2-Heptenal completely inhibited A. flavus growth at 0.0125 µL/mL and 0.2 µL/mL in the vapor phase and liquid contact, respectively. (E)-2-Heptenal can disrupt the plasma membrane integrity of A. flavus via leakage of intracellular electrolytes. Scanning electron microscopy indicated that the mycelial morphology of A. flavus was remarkably affected by (E)-2-heptenal. Metabolomic analyses indicated that 49 metabolites were significantly differentially expressed in A. flavus mycelia exposed to 0.2 µL/mL (E)-2-heptenal; these metabolites were mainly involved in galactose metabolism, starch and sucrose metabolism, the phosphotransferase system, and ATP-binding cassette transporters. ATP production was reduced in (E)-2-heptenal-treated A. flavus, and Janus Green B staining showed reduced cytochrome c oxidase activity. (E)-2-Heptenal treatment induced oxidative stress in A. flavus mycelia with an accumulation of superoxide anions and hydrogen peroxide and increased activities of superoxide dismutase and catalase. Simulated storage experiments showed that fumigation with 400 µL/L of (E)-2-heptenal vapor could completely inhibit A. flavus growth in wheat grains with 20% moisture; this demonstrates its potential use in preventing grain spoilage. This study provides valuable insights into understanding the antifungal effects of (E)-2-heptenal on A. flavus. KEY POINTS : • (E)-2-Heptenal vapor showed the highest antifungal activity against A. flavus among (C5-C10) (E)-2-alkenals. • The antifungal effects of (E)-2-heptenal against A. flavus were determined. • The antifungal actions of (E)-2-heptenal on A. flavus were revealed by metabolomics and biochemical analyses.


Assuntos
Antifúngicos , Aspergillus flavus , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aldeídos/metabolismo , Metabolômica
5.
Appl Microbiol Biotechnol ; 107(23): 7213-7230, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37733053

RESUMO

Plant volatile compounds have great potential for preventing and controlling fungal spoilage in post-harvest grains. Recently, we have reported the antifungal effects of trans-anethole, the main volatile constituent of the Illicium verum fruit, on Aspergillus flavus. In this study, the inhibitory mechanisms of trans-anethole against the growth of A. flavus mycelia were investigated using transcriptomic and biochemical analyses. Biochemical and transcriptomic changes in A. flavus mycelia were evaluated after exposure to 0.2 µL/mL trans-anethole. Scanning electron microscopy showed that trans-anethole treatment resulted in the surface wrinkling of A. flavus mycelia, and calcofluor white staining confirmed that trans-anethole treatment disrupted the mycelial cell wall structure. Annexin V-fluorescein isothiocyanate/propidium iodide double staining suggested that trans-anethole induced apoptosis in A. flavus mycelia. Reduced mitochondrial membrane potential and DNA damage were observed in trans-anethole-treated A. flavus mycelia using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine and 4',6-diamidino-2-phenylindole staining, respectively. 2',7'- Dichloro-dihydro-fluorescein diacetate staining and biochemical assays demonstrated that trans-anethole treatment cause the accumulation of reactive oxygen species in the A. flavus mycelia. Transcriptome results showed that 1673 genes were differentially expressed in A. flavus mycelia exposed to trans-anethole, which were mainly associated with multidrug transport, oxidative phosphorylation, citric acid cycle, ribosomes, and cyclic adenosine monophosphate signaling. We propose that trans-anethole can inhibit the growth of A. flavus mycelia by disrupting the cell wall structure, blocking the multidrug transport process, disturbing the citric acid cycle, and inducing apoptosis. This study provides new insights into the inhibitory mechanism of trans-anethole on A. flavus mycelia and will be helpful for the development of natural fungicides. KEY POINTS: • Biochemical analyses of A. flavus mycelia exposed to trans-anethole were performed • Transcriptomic changes in trans-anethole-treated A. flavus mycelia were analyzed • An inhibitory mechanism of trans-anethole on the growth of A. flavus mycelia was proposed.


Assuntos
Derivados de Alilbenzenos , Antifúngicos , Antifúngicos/química , Aspergillus flavus , Transcriptoma , Derivados de Alilbenzenos/metabolismo , Derivados de Alilbenzenos/farmacologia
6.
Appl Microbiol Biotechnol ; 107(11): 3375-3390, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37115251

RESUMO

Fungal spoilage of postharvest grains poses serious problems with respect to food safety, human health, and the economic value of grains. The protection of cereal grains from deleterious fungi is a critical aim in postharvest grain management. Considering the bulk volume of grain piles in warehouses or bins and food safety, fumigation with natural gaseous fungicides is a promising strategy to control fungal contamination on postharvest grains. Increasing research has focused on the antifungal properties of biogenic volatiles. This review summarizes the literature related to the effects of biogenic volatiles from microbes and plants on spoilage fungi on postharvest grains and highlights the underlying antifungal mechanisms. Key areas for additional research on fumigation with biogenic volatiles in postharvest grains are noted. The research described in this review supports the protective effects of biogenic volatiles against grain spoilage by fungi, providing a basis for their expanded application in the management of postharvest grains.


Assuntos
Fungos , Fungicidas Industriais , Humanos , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Grão Comestível/microbiologia
7.
J Chem Phys ; 159(4)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37486046

RESUMO

We have designed a [Fe(SH)4H]- model with the fifth proton binding either to Fe or S. We show that the energy difference between these two isomers (∆E) is hard to estimate with quantum-mechanical (QM) methods. For example, different density functional theory (DFT) methods give ∆E estimates that vary by almost 140 kJ/mol, mainly depending on the amount of exact Hartree-Fock included (0%-54%). The model is so small that it can be treated by many high-level QM methods, including coupled-cluster (CC) and multiconfigurational perturbation theory approaches. With extrapolated CC series (up to fully connected coupled-cluster calculations with singles, doubles, and triples) and semistochastic heat-bath configuration interaction methods, we obtain results that seem to be converged to full configuration interaction results within 5 kJ/mol. Our best result for ∆E is 101 kJ/mol. With this reference, we show that M06 and B3LYP-D3 give the best results among 35 DFT methods tested for this system. Brueckner doubles coupled cluster with perturbaitve triples seems to be the most accurate coupled-cluster approach with approximate triples. CCSD(T) with Kohn-Sham orbitals gives results within 4-11 kJ/mol of the extrapolated CC results, depending on the DFT method. Single-reference CC calculations seem to be reasonably accurate (giving an error of ∼5 kJ/mol compared to multireference methods), even if the D1 diagnostic is quite high (0.25) for one of the two isomers.

8.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38108484

RESUMO

block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.

9.
J Am Chem Soc ; 144(35): 15932-15937, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36001866

RESUMO

The complex electronic structure and unusual potential energy curve of the chromium dimer have fascinated scientists for decades, with agreement between theory and experiment so far elusive. Here, we present a new ab initio simulation of the potential energy curve and vibrational spectrum that significantly improves on all earlier estimates. Our data support a shift in earlier experimental assignments of a cluster of vibrational frequencies by one quantum number. The new vibrational assignment yields an experimentally derived potential energy curve in quantitative agreement with theory across all bond lengths and across all measured frequencies. By solving this long-standing problem, our results raise the possibility of quantitative quantum chemical modeling of transition metal clusters with spectroscopic accuracy.


Assuntos
Cromo , Teoria Quântica , Simulação por Computador , Análise Espectral , Vibração
10.
Environ Microbiol ; 24(9): 4356-4368, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35621059

RESUMO

Lysine 2-hydroxyisobutyrylation (Khib ) is a recently identified post-translational modification (PTM) that regulates numerous cellular metabolic processes. In pathogenic microorganism, although glycolysis and fungal virulence are regulated by Khib , its potential roles in fungi remain to be elusive. Our preliminary results showed that levels of Khib fluctuate over time in Aspergillus flavus, which frequently contaminates crops and produces carcinogenic aflatoxins. However, the perception of Khib function in A. flavus is limited, especially in mycotoxin-producing strains. Here, we performed a comprehensive analysis of Khib in A. flavus, and 7156 Khib sites were identified in 1473 proteins. Notably, we demonstrated that Khib of AflM, a key enzyme in aflatoxin biosynthesis, affected conidia production and sclerotia formation. Furthermore, aflM deletion impaired aflatoxin biosynthesis, and more importantly, strains in which Khib was mimicked by K to T mutation at K49, K179 and K180 sites showed reduced aflatoxin production compared with wild type and ΔaflM complementation strains. These results indicate that Khib at these sites of AflM negatively regulates aflatoxin biosynthesis in A. flavus. In summary, our study revealed the potential roles of Khib in A. flavus, and particularly shed light on a new way to regulate aflatoxin production via Khib .


Assuntos
Aflatoxinas , Aspergillus flavus , Aflatoxinas/genética , Aspergillus flavus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Esporos Fúngicos/metabolismo
11.
Appl Microbiol Biotechnol ; 106(3): 1241-1255, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35075519

RESUMO

Methods of controlling Aspergillus flavus contamination in agro-products have attracted attention because of its impact on global food security. We previously reported that the natural cereal volatile heptanal could effectively inhibit A. flavus growth and showed great potential as a bio-preservative agent. In this study, the minimum inhibitory concentration and minimum fungicide concentration of heptanal could change the surface morphology of A. flavus spores, causing them to wrinkle and collapse. Transcriptomic analysis showed that heptanal treatment significantly changed the expression of several genes involved in cell wall and plasma damage, reactive oxygen species (ROS) accumulation, energy metabolism, AMPK-activated protein kinase, biosynthesis of unsaturated fatty acids, RNA degradation, and DNA replication. Heptanal-induced early apoptosis of A. flavus spores was characterized by decreased mitochondrial membrane potential, increased intracellular ROS production, and DNA fragmentation. This study provides new insight into the inhibitory mechanism of heptanal against A. flavus and points to its potential application as a bio-preservative. KEY POINTS: • Heptanal can effectively inhibit A. flavus growth in cereal grains. • The transcriptional changes in A. flavus spores exposed to heptanal were analyzed. • The antifungal mechanism of heptanal against A. flavus was elucidated.


Assuntos
Aldeídos , Aspergillus flavus , Antifúngicos , Aspergillus flavus/genética , Perfilação da Expressão Gênica , Esporos Fúngicos
12.
Appl Microbiol Biotechnol ; 106(5-6): 2091-2106, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35179628

RESUMO

The exploitation of plant volatile organic compounds as biofumigants to control postharvest decaying of agro-products has received considerable research attention. Our previous study reported that 1-nonanol, the main constituent of cereal volatiles, can inhibit Aspergillus flavus growth and has the potential as a biofumigant to control the fungal spoilage of cereal grains. However, the antifungal mechanism of 1-nonanol against A. flavus is still unclear at the molecular level. In this study, the minimum inhibitory concentration and minimum fungicidal concentration of 1-nonanol against A. flavus spores were 2 and 4 µL/mL, respectively. Scanning electron microscopy revealed that the 1-nonanol can distort the morphology of A. flavus spore. Annexin V-FITC/PI double staining showed that 1-nonanol induced phosphatidylserine eversion and increased membrane permeability of A. flavus spores. Transcriptional profile analysis showed that 1-nonanol treatment mainly affected the expression of genes related to membrane damage, oxidative phosphorylation, blockage of DNA replication, and autophagy in A. flavus spores. Flow cytometry analysis showed that 1-nonanol treatment caused hyperpolarization of mitochondrial membrane potential and accumulation of reactive oxygen species in A. flavus spores. 4',6-diamidino-2-phenylindole staining showed that treatment with 1-nonanol destroyed the DNA. Biochemical analysis results confirmed that 1-nonanol exerted destructive effects on A. flavus spores by decreasing intracellular adenosine triphosphate content, reducing mitochondrial ATPase activity, accumulating hydrogen peroxide and superoxide anions, and increasing catalase and superoxide dismutase enzyme activities. This study provides new insights into the antifungal mechanisms of 1-nonanol against A. flavus. KEY POINTS: • 1-Nonanol treatment resulted in abnormal morphology of A. flavus spores. • 1-Nonanol affects the expression of key growth-related genes of A. flavus. • The apoptosis of A. favus spores were induced after exposed to 1-nonanol.


Assuntos
Aspergillus flavus , Transcriptoma , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Aspergillus flavus/metabolismo , Álcoois Graxos/metabolismo , Esporos Fúngicos
13.
Appl Microbiol Biotechnol ; 106(19-20): 6625-6640, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36097174

RESUMO

Biogenic volatile organic compounds hold remarkable potential for controlling fungal decay in agro- and food products. Recently, we reported that linalool, the major volatile component of the Zanthoxylum schinifolium pericarp, showed great potential as a biofumigant to control Aspergillus flavus growth in postharvest grains. In this study, the inhibitory effects of linalool on A. flavus growth in stored grains and its underlying mechanism were investigated through transcriptomic and biochemical analyses. Linalool vapor at 800 µL/L can effectively prevent A. flavus growth in 22% moisture wheat grains. Linalool at 2 µL/mL completely inhibited the germination of A. flavus spores, and 10 µL/mL caused spore death. Scanning electron microscopy revealed that linalool treatment caused wrinkling and spore breakage. Transcriptomics showed that 3806 genes were significantly differentially expressed in A. flavus spores exposed to 2 µL/mL linalool, predominantly showing enrichment regarding the ribosome, DNA replication, glutathione metabolism, peroxisome, and MAPK signaling pathways. Flow cytometry showed that linalool treatment caused hyperpolarization of mitochondrial membrane potential. 4,6-Diamidino-2-phenylindole staining indicated that linalool caused DNA fragmentation in A. flavus spores, and monodansylcadaverine staining confirmed that linalool induced autophagy in A. flavus spores. We thus propose that linalool can damage the plasma membrane, cause mitochondrial dysfunction and DNA damage, and induce autophagy in A. flavus spores. These findings considerably improve our understanding of the mechanisms underlying the inhibitory effects of linalool on A. flavus, which is crucial regarding the development of applications to prevent postharvest grain spoilage due to A. flavus infestations. KEY POINTS: • The inhibitory potency of linalool on A. flavus spore germination was determined. • Transcriptomic analyses were performed to identify differentially expressed genes of A. flavus exposed to linalool. • A functional mechanism underlying the inhibitory effects of linalool on A. flavus spore germination is proposed.


Assuntos
Aspergillus flavus , Compostos Orgânicos Voláteis , Monoterpenos Acíclicos , Antifúngicos/farmacologia , Glutationa/metabolismo , Esporos Fúngicos , Compostos Orgânicos Voláteis/metabolismo
14.
Appl Microbiol Biotechnol ; 106(13-16): 5179-5196, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779097

RESUMO

The exploitation of active ingredients from plant volatile organic compounds as natural gaseous fungicides shows remarkable potential for controlling fungal decay in postharvest agroproducts. Although 1-octanol is a common component of cereal volatiles, its antifungal potency against spoilage fungi in postharvest grains remains unclear. In this study, we studied the effectiveness of 1-octanol against Aspergillus flavus growth in postharvest grains and its mechanisms of action. 1-Octanol vapor and liquid contact dose-dependently inhibited A. flavus spore germination and mycelial growth at a low concentration. The simulated storage experiment demonstrated that 300 µL/L of 1-octanol vapor completely controlled A. flavus growth in wheat, corn, and paddy grains with 20% moisture content. 1-Octanol treatment irreversibly damaged the conidial and mycelial morphology of A. flavus and caused electrolyte leakage due to reduced plasma membrane integrity. It induced apoptosis along with morphological abnormalities, phosphatidylserine externalization, mitochondrial membrane potential depolarization, intracellular reactive oxygen species accumulation, and DNA fragmentation in A. flavus cells. Metabolomic analysis revealed that 1-octanol treatment disrupted the biosynthesis of unsaturated fatty acids, ATP-binding cassette transporters, amino acid metabolism, and glycerophospholipid metabolism. This study demonstrated the promising application potential of 1-octanol as a biofumigant for preventing fungal spoilage of postharvest cereal grains. KEY POINTS: • (1) 1-Octanol inhibits Aspergillus flavus growth in the vapor phase and liquid contact; • (2) 1-Octanol damages membrane integrity and induces apoptosis of A. flavus; • (3) Metabolomic changes in A. flavus mycelia were analyzed after 1-octanol treatment.


Assuntos
Aspergillus flavus , Fungicidas Industriais , 1-Octanol/metabolismo , 1-Octanol/farmacologia , Antifúngicos/química , Fungicidas Industriais/farmacologia , Esporos Fúngicos
15.
J Chem Phys ; 157(16): 164108, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36319413

RESUMO

The efficient and reliable treatment of both spin-orbit coupling (SOC) and electron correlation is essential for understanding f-element chemistry. We analyze two approaches to the problem: the one-step approach, where both effects are treated simultaneously, and the two-step state interaction approach. We report an implementation of the ab initio density matrix renormalization group with a one-step treatment of the SOC effect, which can be compared to prior two-step treatments on an equal footing. Using a dysprosium octahedral complex and bridged dimer as benchmark systems, we identify characteristics of problems where the one-step approach is beneficial for obtaining the low-energy spectrum.

16.
Appl Microbiol Biotechnol ; 105(9): 3745-3757, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33880599

RESUMO

Hexanal, a natural volatile organic compound, exerts antifungal activity against Aspergillus flavus; however, the mechanisms underlying these effects are unclear. In this study, we found that the growth of A. flavus mycelium was completely inhibited following exposure to 0.4 µL/mL hexanal (minimal inhibitory concentration). A detailed metabolomics survey was performed to identify changes in metabolite production by A. flavus cells after exposure to 1/2 the minimal inhibitory concentration of hexanal for 6 h, which revealed significant differences in 70 metabolites, including 20 upregulated and 50 downregulated metabolites. Among them, levels of L-malic acid, α-linolenic acid, phosphatidylcholine, D-ribose, riboflavin, D-mannitol, D-sorbitol, and deoxyinosine were significantly reduced. The metabolomics results suggest that the metabolites are mainly involved in the tricarboxylic acid cycle (TCA), ABC transport system, and membrane synthesis in A. flavus cells. Hexanal treatment reduced succinate dehydrogenase and mitochondrial dehydrogenase activity and stimulated superoxide anion and hydrogen peroxide accumulation in A. flavus mycelia. Increases in the electric conductivity and A260nm of the culture supernatant indicated cell membrane leakage. Therefore, hexanal appears to disrupt cell membrane synthesis, induce mitochondrial dysfunction, and increase oxidative stress in A. flavus mycelia. KEY POINTS: • Metabolite changes of A. flavus mycelia were identified after hexanal treatment. • Most differential metabolites were downregulated in hexanal-treated A. flavus. • An antifungal model of hexanal against A. flavus was proposed.


Assuntos
Aldeídos , Aspergillus flavus , Antifúngicos/farmacologia , Metabolômica
17.
Appl Microbiol Biotechnol ; 105(20): 7871-7888, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34550439

RESUMO

Chemical control of fungal spoilage of postharvest cereal grains is an important strategy for the management of grain storage. Here, the potential antifungal activity of 1-nonanol, a main component of cereal volatiles, against Aspergillus flavus was studied. The growth of A. flavus was completely inhibited by 0.11 and 0.20 µL/mL 1-nonanol at vapor and liquid contact phases, respectively. Metabolomic analysis identified 135 metabolites whose expression was significantly different between 1-nonanol-treated and untreated A. flavus. These metabolites were involved in the tricarboxylic acid cycle, amino acid biosynthesis, protein degradation and absorption, aminoacyl-tRNA biosynthesis, mineral absorption, and in interactions with ABC transporters. Biochemical validation confirmed the disruptive effect of 1-nonanol on A. flavus growth, as indicated by the leakage of intracellular electrolytes, decreased succinate dehydrogenase, mitochondrial dehydrogenase, and ATPase activity, and the accumulation of reactive oxygen species. We speculated that 1-nonanol could disrupt cell membrane integrity and mitochondrial function and might induce apoptosis of A. flavus mycelia. Simulated grain storage experiments showed that 1-nonanol vapor, at a concentration of 264 µL/L, completely inhibited A. flavus growth in wheat, corn, and paddy grain with an 18% moisture content. This study provides new insights into the antifungal mechanism of 1-nonanol against A. flavus, indicating that it has a promising potential as a bio-preservative to prevent fungal spoilage of postharvest grains. KEY POINTS: • 1-Nonanol showed higher antifungal activity against A. flavus. • The antifungal mechanisms of 1-nonanol against A. flavus were revealed. • 1-Nonanol could damage cell membrane integrity and mitochondrial function.


Assuntos
Antifúngicos , Aspergillus flavus , Antifúngicos/farmacologia , Álcoois Graxos , Metabolômica
18.
Appl Microbiol Biotechnol ; 105(18): 6871-6886, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34477940

RESUMO

Aspergillus flavus is a notorious saprophytic fungus that compromises the quantity and quality of postharvest grains and produces carcinogenic aflatoxins. The natural compound hexanal disrupts cell membrane synthesis and mitochondrial function and induces apoptosis in A. flavus; here, we investigated the molecular mechanisms underlying these effects. The minimum inhibition and fungicidal concentration (MIC and MFC) of hexanal against A. flavus spores were 3.2 and 9.6 µL/mL, respectively. Hexanal exposure resulted in abnormal spore morphology and early spore apoptosis. These changes were accompanied by increased reactive oxygen species production, reduced mitochondrial membrane potential, and DNA fragmentation. Transcriptomic analysis revealed that hexanal treatment greatly altered the metabolism of A. flavus spores, including membrane permeability, mitochondrial function, energy metabolism, DNA replication, oxidative stress, and autophagy. This study provides novel insights into the mechanism underlying the antifungal activity of hexanal, suggesting that hexanal can be used an anti-A. flavus agent for agricultural applications. KEY POINTS: • Hexanal exposure resulted in abnormal spore morphology. • The apoptotic characteristics of A. flavus were induced after hexanal treatment. • Hexanal could change the expression of key A. flavus growth-related genes.


Assuntos
Aflatoxinas , Aspergillus flavus , Aflatoxinas/metabolismo , Aldeídos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Apoptose , Mitocôndrias , Esporos Fúngicos/metabolismo
19.
J Chem Phys ; 154(22): 224116, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241198

RESUMO

There has been recent interest in the deployment of ab initio density matrix renormalization group (DMRG) computations on high performance computing platforms. Here, we introduce a reformulation of the conventional distributed memory ab initio DMRG algorithm that connects it to the conceptually simpler and advantageous sum of the sub-Hamiltonian approach. Starting from this framework, we further explore a hierarchy of parallelism strategies that includes (i) parallelism over the sum of sub-Hamiltonians, (ii) parallelism over sites, (iii) parallelism over normal and complementary operators, (iv) parallelism over symmetry sectors, and (v) parallelism within dense matrix multiplications. We describe how to reduce processor load imbalance and the communication cost of the algorithm to achieve higher efficiencies. We illustrate the performance of our new open-source implementation on a recent benchmark ground-state calculation of benzene in an orbital space of 108 orbitals and 30 electrons, with a bond dimension of up to 6000, and a model of the FeMo cofactor with 76 orbitals and 113 electrons. The observed parallel scaling from 448 to 2800 central processing unit cores is nearly ideal.

20.
J Chem Phys ; 155(4): 044103, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34340387

RESUMO

We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137-6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA