Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 15(10): 7051-7, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26426759

RESUMO

Titanium dioxide (TiO2) has been extensively investigated as photoanode for water oxidation, as it is believed to be one of the most stable photoanode materials. Yet, we surprisingly found that TiO2 photoanodes (rutile nanowire, anatase nanotube, and P25 nanoparticle film) suffered from substantial photocurrent decay in neutral (Na2SO4) as well as basic (KOH) electrolyte solution. Photoelectrochemical measurements togehter with electron microscopy studies performed on rutile TiO2 nanowire photoanode show that the photocurrent decay is due to photohole induced corrosion, which competes with water oxidation reaction. Further studies reveal that photocurrent decay profile in neutral and basic solutions are fundamentally different. Notably, the structural reconstruction of nanowire surface occurs simultaneously with the corrosion of TiO2 in KOH solution resulting in the formation of an amorphous layer of titanium hydroxide, which slows down the photocorrosion. Based on this discovery, we demonstrate that the photoelectrochemical stability of TiO2 photoanode can be significantly improved by intentionally coating an amorphous layer of titanium hydroxide on the nanowire surface. The pretreated TiO2 photaonode exhibits an excellent photocurrent retention rate of 97% after testing in KOH solution for 72 h, while in comparison the untreated sample lost 10-20% of photocurrent in 12 h under the same measurement conditions. This work provides new insights in understanding of the photoelectrochemical stability of bare TiO2 photoanodes.


Assuntos
Corrosão , Titânio/química , Microscopia Eletrônica de Varredura
2.
Nano Lett ; 15(5): 3189-94, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25830495

RESUMO

Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.

4.
Angew Chem Int Ed Engl ; 55(10): 3403-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26847172

RESUMO

We report a strategy for efficient suppression of electron-hole recombination in hematite photoanodes. Acid-treated hematite showed a substantially enhanced photocurrent density compared to untreated samples. Electrochemical impedance spectroscopy studies revealed that the enhanced photocurrent is partly due to improved efficiency of charge separation. Transient absorption spectroscopic studies coupled to electrochemical measurements indicate that, in addition to improved bulk electrochemical properties, acid-treated hematite has significantly decreased surface electron-hole recombination losses owing to a greater yield of the trapped photoelectrons being extracted to the external circuit.

5.
Nano Lett ; 14(5): 2522-7, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24678990

RESUMO

Conducting polymers such as polyaniline and polypyrrole have been widely used as pseudocapacitive electrode materials for supercapacitors. However, their structural instability resulting from repeated volumetric swelling and shrinking during charge/discharge process has been a major hurdle for their practical applications. This work demonstrates a simple and general strategy to substantially enhance the cycling stability of conductive polymer electrodes by deposition of a thin carbonaceous shell onto their surface. Significantly, carbonaceous shell-coated polyaniline and polypyrrole electrodes achieved remarkable capacitance retentions of ∼95 and ∼85% after 10,000 cycles. Electron microscopy studies revealed that the presence of ∼5 nm thick carbonaceous shell can effective prevent the structural breakdown of polymer electrodes during charge/discharge process. Importantly, the polymer electrodes with a ∼5 nm thick carbonaceous shell exhibited comparable specific capacitance and pseudocapacitive behavior as the bare polymer electrodes. We anticipate that the same strategy can be applied for stabilizing other polymer electrode materials. The capability of fabricating stable polymer electrodes could open up new opportunities for pseudocapacitive devices.

6.
Nano Lett ; 13(6): 2628-33, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23634667

RESUMO

To push the energy density limit of asymmetric supercapacitors (ASCs), a new class of anode materials is needed. Vanadium nitride (VN) holds great promise as anode material for ASCs due to its large specific capacitance, high electrical conductivity, and wide operation windows in negative potential. However, its poor electrochemical stability severely limits its application in SCs. In this work, we demonstrated high energy density, stable, quasi-solid-state ASC device based on porous VN nanowire anode and VOx nanowire cathode for the first time. The VOx//VN-ASC device exhibited a stable electrochemical window of 1.8 V and excellent cycling stability with only 12.5% decrease of capacitance after 10,000 cycles. More importantly, the VOx//VN-ASC device achieved a high energy density of 0.61 mWh cm(-3) at current density of 0.5 mA cm(-2) and a high power density of 0.85 W cm(-3) at current density of 5 mA cm(-2). These values are substantially enhanced compared to most of the reported quasi/all-solid-state SC devices. This work constitutes the first demonstration of using VN nanowires as high energy anode, which could potentially improve the performance of energy storage devices.

7.
Nano Lett ; 12(3): 1690-6, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22364294

RESUMO

We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors.


Assuntos
Capacitância Elétrica , Eletrônica/instrumentação , Hidrogênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Titânio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
8.
Nano Lett ; 12(10): 5376-81, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22947093

RESUMO

Metal nitrides have received increasing attention as electrode materials for high-performance supercapacitors (SCs). However, most of them are suffered from poor cycling stability. Here we use TiN as an example to elucidate the mechanism causing the capacitance loss. X-ray photoelectron spectroscopy analyses revealed that the instability is due to the irreversible electrochemical oxidation of TiN during the charging/discharging process. Significantly, we demonstrate for the first time that TiN can be stabilized without sacrificing its electrochemical performance by using poly(vinyl alcohol) (PVA)/KOH gel as the electrolyte. The polymer electrolyte suppresses the oxidation reaction on electrode surface. Electrochemical studies showed that the TiN solid-state SCs exhibit extraordinary stability up to 15,000 cycles and achieved a high volumetric energy density of 0.05 mWh/cm(3). The capability of effectively stabilizing nitride materials could open up new opportunities in developing high-performance and flexible SCs.

9.
Nat Commun ; 14(1): 6662, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863930

RESUMO

Large lattice expansion/contraction with Li+ intercalation/deintercalation of electrode active materials results in severe structural degradation to electrodes and can negatively impact the cycle life of solid-state lithium-based batteries. In case of the layered orthorhombic MoO3 (α-MoO3), its large lattice variation along the b axis during Li+ insertion/extraction induces irreversible phase transition and structural degradation, leading to undesirable cycle life. Herein, we propose a lattice pinning strategy to construct a coherent interface between α-MoO3 and η-Mo4O11 with epitaxial intergrowth structure. Owing to the minimal lattice change of η-Mo4O11 during Li+ insertion/extraction, η-Mo4O11 domains serve as pin centers that can effectively suppress the lattice expansion of α-MoO3, evidenced by the noticeably decreased lattice expansion from about 16% to 2% along the b direction. The designed α-MoO3/η-Mo4O11 intergrown heterostructure enables robust structural stability during cycling (about 81% capacity retention after 3000 cycles at a specific current of 2 A g-1 and 298 ± 2 K) by harnessing the merits of epitaxial stabilization and the pinning effect. Finally, benefiting from the stable positive electrode-solid electrolyte interface, a highly durable and flexible all-solid-state thin-film lithium microbattery is further demonstrated. This work advances the fundamental understanding of the unstable structure evolution for α-MoO3, and may offer a rational strategy to develop highly stable electrode materials for advanced batteries.

10.
Hum Genome Var ; 10(1): 15, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217505

RESUMO

Most variations in the human genome refer to single-nucleotide variation (SNV), small fragment insertions and deletions, and genomic copy number variation (CNV). Many human diseases including genetic disorders are associated with variations in the genome. These disorders are often difficult to be diagnosed because of their complex clinical conditions, therefore, an effective detection method is needed to facilitate clinical diagnosis and prevent birth defects. With the development of high-throughput sequencing technology, the method of targeted sequence capture chip has been extensively used owing to its high throughput, high accuracy, fast speed, and low cost. In this study, we designed a chip that potentially captured the coding region of 3043 genes associated with 4013 monogenic diseases, with an addition of 148 chromosomal abnormalities that can be identified by targeting specific regions. To assess the efficiency, a strategy of combining the BGISEQ500 sequencing platform with the designed chip was utilized to screen variants in 63 patients. Eventually, 67 disease-associated variants were found, 31 of which were novel. The results of the evaluation test also show that this combined strategy complies with the requirements of clinical testing and has proper clinical application value.

11.
Langmuir ; 28(28): 10558-64, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22697427

RESUMO

We report the synthesis of Zn(x)Cd(1-x)S@ZnO nanorod arrays via a facile two-step process and the implementation of these core-shell nanorods as an environmental friendly and recyclable photocatalyst for methyl orange degradation. The band gap of Zn(x)Cd(1-x)S@ZnO core-shell nanorods can be readily tunable by adjusting the ratio of Zn/Cd during the synthesis. These Zn(x)Cd(1-x)S@ZnO core-shell nanorods exhibit a high photocatalytic activity and good stability in the degradation of the methyl orange. Moreover, these films grown on FTO substrates make the collection and recycle of the photocatalyst easier. These findings may open new opportunities for the design of effective, stable, and easy-recyclable photocatalytic materials.

12.
Langmuir ; 28(30): 11078-85, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22775312

RESUMO

Herein we report the electrochemical synthesis of porous Pr(OH)(3) nanobelt arrays (NBAs), nanowire arrays (NWAs), nanowire bundles (NWBs), and nanowires (NWs) and their applications as dye absorbents in water treatment. These Pr(OH)(3) nanostructures exhibit high efficient and selective adsorption of the dyes with amine (-NH(2)) functional groups such as Congo red, reactive yellow, and reactive blue. The high efficiency and selectivity is attributed to the large effective surface area of the porous structure, plentiful hydroxyl groups, and basic sites on the Pr(OH)(3) surface. Furthermore, the toxicity studies of these porous Pr(OH)(3) nanostructure show a negligible effect on seed germination, indicating that they hold great potential as environmentally friendly absorbents in water treatment.


Assuntos
Corantes/química , Nanoestruturas/química , Adsorção , Vermelho Congo/química , Germinação/efeitos dos fármacos , Nanoestruturas/toxicidade , Nanofios/química , Nanofios/toxicidade , Porosidade , Purificação da Água
13.
Elife ; 112022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142290

RESUMO

Hereditary gingival fibromatosis (HGF) is the most common genetic form of gingival fibromatosis which is featured as a localized or generalized overgrowth of gingivae. Currently two genes (SOS1 and REST), as well as four loci (2p22.1, 2p23.3-p22.3, 5q13-q22, and 11p15), have been identified as associated with HGF in a dominant inheritance pattern. Here, we report 13 individuals with autosomal-dominant HGF from a four-generation Chinese family. Whole-exome sequencing followed by further genetic co-segregation analysis was performed for the family members across three generations. A novel heterozygous missense mutation (c.2812G > A) in zinc finger protein 862 gene (ZNF862) was identified, and it is absent among the population as per the Genome Aggregation Database. The functional study supports a biological role of ZNF862 for increasing the profibrotic factors particularly COL1A1 synthesis and hence resulting in HGF. Here, for the first time we identify the physiological role of ZNF862 for the association with the HGF.


Assuntos
Fibromatose Gengival/genética , Predisposição Genética para Doença , Proliferação de Células , Regulação para Baixo , Feminino , Fibromatose Gengival/patologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Testes Genéticos , Humanos , Masculino , Mutação , Linhagem , Interferência de RNA , Análise de Sequência de RNA , Regulação para Cima
14.
Dalton Trans ; 49(27): 9322-9329, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32579629

RESUMO

Two new trinuclear Pt(ii) complexes {[Pt(dien)]3(tib)}(NO3)6 (1) and {[Pt(dpa)]3(tib)}(NO3)6 (2) (dien: diethylenetriamine, dpa: bis-(2-pyridylmethyl)amine, tib: 1,3,5-tris(1H-imidazol-1-yl)benzene) have been designed, synthesized, characterized and applied to a series of biochemical studies. We found that both of the Pt(ii) complexes exhibited much better selectivity for human telomeric G-quadruplex sequence than promoter G-quadruplexes (c-kit, c-myc, and bcl2) or duplex DNA. Both complexes displayed comparative stability and affinity towards human telomeric G-quadruplex by the studies from surface plasmon resonance, fluorescence resonance energy transfer and polymerase chain reaction stop assays. The circular dichroism indicated that both complexes could induce and stabilize anti-parallel G-quadruplex structures. Molecule docking presented that Pt(ii) complex intercalated into the large groove of human telomeric G-quadruplex (PDB ID: 143D). Furthermore, telomeric repeat amplification protocol assays quantitatively evaluated the inhibition of telomerase activity caused by the Pt(ii) complexes. The obtained IC50 values of 6.41 ± 0.042 µM and 2.67 ± 0.035 µM for 1 and 2, respectively, exhibited strong telomerase inhibitions. All results suggest that such fan-shaped trinuclear Pt(ii) complexes are effective and selective G-quadruplex binders, as well as strong telomerase inhibitors. This study provides insight into the development of human telomeric G-quadruplex targeted anticancer drugs based on the metal complex.


Assuntos
Complexos de Coordenação/farmacologia , Inibidores Enzimáticos/farmacologia , Platina/farmacologia , Telomerase/antagonistas & inibidores , Complexos de Coordenação/química , Inibidores Enzimáticos/química , Quadruplex G/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Platina/química , Telomerase/metabolismo
15.
Adv Mater ; 32(43): e2005344, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32954557

RESUMO

Owing to the limited charge storage capability of transitional metal oxides in aqueous electrolytes, the use of redox electrolytes (RE) represents a promising strategy to further increase the energy density of aqueous batteries or pseudocapacitors. The usual coupling of an electrode and an RE possesses weak electrode/RE interaction and weak adsorption of redox moieties on the electrode, resulting in a low capacity contribution and fast self-discharge. In this work, Fe(CN)6 4- groups are grafted on the surface of Co3 O4 electrode via formation of CoN bonds, creating a synergistic interface between the electrode and the RE. With such an interface, the coupled Co3 O4 -RE system exhibits greatly enhanced charge storage from both Co3 O4 and RE, delivering a large reversible capacity of ≈1000 mC cm-2 together with greatly reduced self-discharge. The significantly improved electrochemical activity of Co3 O4 can be attributed to the tuned work function via charge injection from Fe(CN)6 4- , while the greatly enhanced adsorption of K3 Fe(CN)6 molecules is achieved by the interface induced dipole-dipole interaction on the liquid side. Furthermore, this enhanced electrode-electrolyte coupling is also applicable in the NiO-RE system, demonstrating that the synergistic interface design can be a general strategy to integrate electrode and electrolyte for high-performance energy storage devices.

16.
Mar Biotechnol (NY) ; 11(2): 236-42, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18763017

RESUMO

Half-smooth tongue sole (Cynoglossus semilaevis: Pleuronectiformes) is a commercially important cultured marine flatfish in China and forms an important fishery resource, but the research of its genome is underdeveloped. In this study, we constructed a female C. semilaevis fosmid library and analyzed the fosmid end sequences to provide a preliminary assessment of the genome. The library consists of 49,920 clones with an average insert size of about 39 kb, amounting to 3.23 genome equivalents. Fosmid stability assays indicate that female C. semilaevis DNA was stable during propagation in the fosmid system. Library screening with eight microsatellite markers yielded between two and five positive clones, and none of those tested was absent from the library. End-sequencing of both 5' and 3' ends of 1,152 individual clones generated 2,247 sequences after trimming, with an average sequence length of 855 bp. BLASTN searches of the nr and EST databases of GenBank and BLASTX searches of the nr database resulted in 259 (11.53%) and 287 (12.77%) significant hits (E < e (-5)), respectively. Repetitive sequences analysis resulted in 5.23% of base pairs masked using both the Fugu and Danio databases, repetitive elements were composed of retroelements, DNA transposons, satellites, simple repeats, and low-complexity sequences. The fosmid library, in conjunction with the fosmid end sequences, will serve as a useful resource for large-scale genome sequencing, physical mapping, and positional cloning, and provide a better understanding of female C. semilaevis genome.


Assuntos
Linguados/genética , Biblioteca Genômica , Animais , DNA/análise , Feminino , Genoma/genética , Repetições de Microssatélites , Análise de Sequência de DNA
17.
Adv Mater ; 31(24): e1900060, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31045288

RESUMO

Potassium-ion batteries (PIBs) are one of the emerging energy-storage technologies due to the low cost of potassium and theoretically high energy density. However, the development of PIBs is hindered by the poor K+ transport kinetics and the structural instability of the cathode materials during K+ intercalation/deintercalation. In this work, birnessite nanosheet arrays with high K content (K0.77 MnO2 ⋅0.23H2 O) are prepared by "hydrothermal potassiation" as a potential cathode for PIBs, demonstrating ultrahigh reversible specific capacity of about 134 mAh g-1 at a current density of 100 mA g-1 , as well as great rate capability (77 mAh g-1 at 1000 mA g-1 ) and superior cycling stability (80.5% capacity retention after 1000 cycles at 1000 mA g-1 ). With the introduction of adequate K+ ions in the interlayer, the K-birnessite exhibits highly stabilized layered structure with highly reversible structure variation upon K+ intercalation/deintercalation. The practical feasibility of the K-birnessite cathode in PIBs is further demonstrated by constructing full cells with a hard-soft composite carbon anode. This study highlights effective K+ -intercalation for birnessite to achieve superior K-storage performance for PIBs, making it a general strategy for developing high-performance cathodes in rechargeable batteries beyond lithium-ion batteries.

18.
Adv Mater ; 30(12): e1706640, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29424076

RESUMO

The insertion/deinsertion mechanism enables plenty of charge-storage sites in the bulk phase to be accessible to intercalated ions, giving rise to at least one more order of magnitude higher energy density than the adsorption/desorption mechanism. However, the sluggish ion diffusion in the bulk phase leads to several orders of magnitude slower charge-transport kinetics. An ideal energy-storage device should possess high power density and large energy density simultaneously. Herein, surface-modified Fe2 O3 quantum dots anchored on graphene nanosheets are developed and exhibit greatly enhanced pseudocapacitance via fast dual-ion-involved redox reactions with both large specific capacity and fast charge/discharge capability. By using an aqueous Na2 SO3 electrolyte, the oxygen-vacancy-tuned Fe2 O3 surface greatly enhances the absorption of SO32- anions that majorly increase the surface pseudocapacitance. Significantly, the Fe2 O3 -based electrode delivers a high specific capacity of 749 C g-1 at 5 mV s-1 and retains 290 C g-1 at an ultrahigh scan rate of 3.2 V s-1 . With a novel dual-electrolyte design, a 2 V Fe2 O3 /Na2 SO3 //MnO2 /Na2 SO4 asymmetric supercapacitor is constructed, delivering a high energy density of 75 W h kg-1 at a power density of 3125 W kg-1 .

19.
Adv Mater ; 29(7)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27922736

RESUMO

A surface-modified Co3 O4 ultrathin nanosheet (denoted as PCO) is reported via controllable phosphate ion functionalization for pseudocapacitors. An energy density of 71.6 W h kg-1 (at 1500 W kg-1 ) is achieved by the PCO-based pseudocapacitor. The unique porous nanosheet morphology, high surface reactivity, and fast electrode kinetics of PCO are found to be responsible for the enhanced pseudocapacitive performance.

20.
Sci Rep ; 7(1): 5549, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717152

RESUMO

Chinese alligator (Alligator sinensis) is an endangered freshwater crocodilian endemic to China, which experienced a severe bottleneck about 30 years ago. In this study, we developed locus-specific primers to investigate the polymorphism of 3 major histocompatibility complex (MHC) loci in 3 Chinese alligator populations, in combination with 6 neutral microsatellite markers as a contrast. We found the genetic trace for the bottleneck effect on the endangered Chinese alligator: the low allelic diversity (2 alleles at each locus), the low nucleotide substitution rate (no more than 0.009) at all sites, the deviation from Hardy-Weinberg Equilibrium/heterozygote deficiency, and the significant Tajima's D values, indicating the MHC class I and class II loci being at different stages of bottleneck. We also obtained 3 pieces of evidence for balancing selection on this severely bottlenecked reptile: an obvious excess of nonsynonymous substitutions over synonymous at the antigen-binding positions, the mean synonymous substitution rate of MHC exons significantly higher than mean nucleotide substitution rate of introns, and the differentiation coefficient F ST of MHC loci significantly lower than that of microsatellite loci. Consequently, we emphasize that the Chinese alligator holds a pretty low adaptive ability and requires scientific conservation strategies to ensure the long-term population development.


Assuntos
Jacarés e Crocodilos/genética , Genética Populacional , Complexo Principal de Histocompatibilidade/genética , Animais , China , Éxons , Frequência do Gene , Heterozigoto , Íntrons , Repetições de Microssatélites , Polimorfismo Genético , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA