Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Microb Cell Fact ; 21(1): 137, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820909

RESUMO

BACKGROUND: Vitamin D insufficiency or deficiency is associated with an altered microbiota in older men. However, the relationship between the gut microbiota and 25-hydroxyvitamin D (25(OH)D) levels remains unknown in postmenopausal women. In this study, fecal microbiota profiles for 88 postmenopausal women in the high 25(OH)D (HVD) group (n = 44) and the low 25(OH)D (LVD) group (n = 44) were determined. An integrated 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach was applied to explore the association of serum 25(OH)D levels with the gut microbiota and fecal metabolic phenotype. Adjustments were made using several statistical models for potential confounding variables identified from the literature. RESULTS: The results demonstrated that the community diversity estimated by the Observe, Chao1 and ACE indexes was significantly lower in the LVD group than in the HVD group. Additionally, two kinds of characteristic differences in the microflora were analyzed in the HVD group, and ten kinds of characteristic differences in the microflora were analyzed in the LVD group. We observed that some bacteria belonging to the genera Bifidobacterium, Bacillus, F0332 and Gemella, were enriched in the LVD group, as were other genera, including Lachnoclostridium, UC5_1_2E3, Ruminococcus_gnavus_group and un_f_Lachnospiraceae. Christensenellaceae, Eggerthellaceae and Cloacibacillus were enriched in the HVD group. The L-pyroglutamic acid, inosine, and L-homocysteic acid levels were higher in the HVD group and were negatively correlated with the 1,2-benzenedicarboxylic acid and cholic acid metabolic levels. CONCLUSIONS: These observations provide a better understanding of the relationships between serum 25(OH)D levels and the fecal microbiota and metabolites in postmenopausal women.


Assuntos
Microbioma Gastrointestinal , Bactérias/genética , China , Feminino , Microbioma Gastrointestinal/genética , Humanos , Pós-Menopausa , RNA Ribossômico 16S/genética , Vitamina D/análogos & derivados
2.
Microb Cell Fact ; 20(1): 216, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838016

RESUMO

BACKGROUND: Faecal microbiota transplantation (FMT) is an effective therapy for recurrent Clostridium difficile infections and chronic gastrointestional infections. However, the risks of FMT and the selection process of suitable donors remain insufficiently characterized. The eligibility rate for screening, underlying microbial basis, and core ethical issues of stool donors for FMT are yet to be elucidated in China. RESULTS: The potential stool donors were screened from December 2017 to December 2019 with the help of an online survey, clinical assessments, and stool and blood testing. Bioinformatics analyses were performed, and the composition and stability of gut microbiota in stool obtained from eligible donors were dynamically observed using metagenomics. Meanwhile, we build a donor microbial evaluation index (DoMEI) for stool donor screening. In the screening process, we also focused on ethical principles and requirements. Of the 2071 participants, 66 donors were selected via the screening process (3.19% success rate). Although there were significant differences in gut microbiota among donors, we found that the changes in the gut microbiota of the same donor were typically more stable than those between donors over time. CONCLUSIONS: DoMEI provides a potential reference index for regular stool donor re-evaluation. In this retrospective study, we summarised the donor recruitment and screening procedure ensuring the safety and tolerability for FMT in China. Based on the latest advances in this field, we carried out rigorous recommendation and method which can assist stool bank and clinicians to screen eligible stool donor for FMT.


Assuntos
Seleção do Doador/métodos , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metagenômica/métodos , Doadores de Tecidos , Adolescente , Adulto , China , Infecções por Clostridium/terapia , Biologia Computacional/métodos , Feminino , Humanos , Masculino , Estudos Retrospectivos , Adulto Jovem
3.
Appl Environ Microbiol ; 81(13): 4536-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911484

RESUMO

The sequencing chips and kits of the Ion Torrent Personal Genome Machine (PGM), which employs semiconductor technology to measure pH changes in polymerization events, have recently been upgraded. The quality of PGM sequences has not been reassessed, and results have not been compared in the context of a gene-targeted microbial ecology study. To address this, we compared sequence profiles across available PGM chips and chemistries and with 454 pyrosequencing data by determining error types and rates and diazotrophic community structures. The PGM was then used to assess differences in nifH-harboring bacterial community structure among four corn-based cropping systems. Using our suggested filters from mock community analyses, the overall error rates were 0.62, 0.36, and 0.39% per base for chips 318 and 314 with the 400-bp kit and chip 318 with the Hi-Q chemistry, respectively. Compared with the 400-bp kit, the Hi-Q kit reduced indel rates by 28 to 59% and produced one to seven times more reads acceptable for downstream analyses. The PGM produced higher frameshift rates than pyrosequencing that were corrected by the RDP FrameBot tool. Significant differences among platforms were identified, although the diversity indices and overall site-based conclusions remained similar. For the cropping system analyses, a total of 6,182 unique NifH operational taxonomic units at 5% amino acid dissimilarity were obtained. The current crop type, as well as the crop rotation history, significantly influenced the composition of the soil diazotrophic community detected.


Assuntos
Biota , Biologia Molecular/métodos , Oxirredutases/genética , Análise de Sequência de DNA/métodos , Microbiologia do Solo , Erros de Diagnóstico , Zea mays/crescimento & desenvolvimento
4.
Int J Syst Evol Microbiol ; 64(Pt 10): 3496-3502, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25052393

RESUMO

A novel Gram-staining-negative, aerobic, rod-shaped, non-motile, reddish-orange and chemoheterotrophic bacteria, designated strain KD52(T), was isolated from a culture of the alga Phaeodactylum tricornutum from Xiamen, Fujian Province, China. 16S rRNA gene sequence comparison showed that strain KD52(T) was a member of the family Saprospiraceae, forming a distinct lineage with 'Portibacter lacus' KCTC 23747. The 16S rRNA gene sequence similarity between strain KD52(T) and the type strains of species of the family Saprospiraceae ranged from 86% to 89%. Growth occurred at 20-37 °C (optimum, 28 °C), in the presence of 1-9% (w/v) NaCl (optimum, 2.5%) and at pH 5-8.5 (optimum, pH 6.0). The dominant fatty acids (>10%) of strain KD52(T) were iso-C15:0 (33.1%), iso-C15:1 G (14.8%) and summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c, 13.8%). The major polar lipids were diphosphatidylglycerol, three unidentified phospholipids, four unknown lipids and one unidentified aminolipid. The DNA G+C content was 51 mol% and the major respiratory quinone was menaquinone-7 (MK-7). On the basis of phenotypic data and phylogenetic inference, strain KD52(T) represents a novel species of a new genus, for which the name Phaeodactylibacter xiamenensis gen. nov., sp. nov., is proposed. The type strain is KD52(T) ( = MCCC 1F01213(T) = KCTC 32575(T)).


Assuntos
Bacteroidetes/classificação , Diatomáceas/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Microb Cell Fact ; 13: 75, 2014 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-24886410

RESUMO

Controlling harmful algae blooms (HABs) using microbial algicides is cheap, efficient and environmental-friendly. However, obtaining high yield of algicidal microbes to meet the need of field test is still a big challenge since qualitative and quantitative analysis of algicidal compounds is difficult. In this study, we developed a protocol to increase the yield of both biomass and algicidal compound present in a novel algicidal actinomycete Streptomyces alboflavus RPS, which kills Phaeocystis globosa. To overcome the problem in algicidal compound quantification, we chose algicidal ratio as the index and used artificial neural network to fit the data, which was appropriate for this nonlinear situation. In this protocol, we firstly determined five main influencing factors through single factor experiments and generated the multifactorial experimental groups with a U15(155) uniform-design-table. Then, we used the traditional quadratic polynomial stepwise regression model and an accurate, fully optimized BP-neural network to simulate the fermentation. Optimized with genetic algorithm and verified using experiments, we successfully increased the algicidal ratio of the fermentation broth by 16.90% and the dry mycelial weight by 69.27%. These results suggested that this newly developed approach is a viable and easy way to optimize the fermentation conditions for algicidal microorganisms.


Assuntos
Algoritmos , Haptófitas/metabolismo , Redes Neurais de Computação , Streptomyces/genética , Streptomyces/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Haptófitas/crescimento & desenvolvimento , Haptófitas/microbiologia , Proliferação Nociva de Algas , Praguicidas/metabolismo , Streptomyces/crescimento & desenvolvimento
6.
Int J Syst Evol Microbiol ; 63(Pt 6): 2095-2100, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23087165

RESUMO

A taxonomic study was carried out on strain SCSWE24(T), isolated from a seawater sample collected from the South China Sea. Cells of strain SCSWE24(T) were Gram-negative, rod-shaped, non-motile, moderately halophilic and capable of reducing nitrate to nitrite. Growth was observed at salinities from 1.5 to 4.5% and at 4-37 °C; it was unable to degrade gelatin. The dominant fatty acids (>15%) were summed feature 3 (C16:1ω7c and/or C16:1ω6c; 50.4%) and C16:0 (21.1%). The G+C content of the chromosomal DNA was 58.8 mol%. 16S rRNA gene sequence comparisons showed that strain SCSWE24(T) was most closely related to an uncultured bacterium clone Tun3b.F5 (98%; GenBank accession no. FJ169216), and showed 92% similarity to an endosymbiont bacterium from the bone-eating worm Osedax mucofloris (clone Omu 9 c4791; FN773233). Levels of similarity between strain SCSWE24(T) and type strains of recognized species in the family Oceanospirillaceae were less than 93%; the highest similarity was 92%, to both Amphritea japonica JAMM 1866(T) and 'Oceanicoccus sagamiensis' PZ-5. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SCSWE24(T) formed a distinct evolutionary lineage within the family Oceanospirillaceae. Strain SCSWE24(T) was distinguishable from members of phylogenetically related genera by differences in several phenotypic properties. On the basis of the phenotypic and phylogenetic data, strain SCSWE24(T) represents a novel species of a new genus, for which the name Sinobacterium caligoides gen. nov., sp. nov. is proposed. The type strain of Sinobacterium caligoides is SCSWE24(T) (=CCTCC AB 209289(T) =LMG 25705(T) =MCCC 1F01088(T)). An emended description of Amphritea japonica is also provided.


Assuntos
Oceanospirillaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Oceanospirillaceae/genética , Oceanospirillaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia da Água
7.
Appl Microbiol Biotechnol ; 97(20): 9207-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23224407

RESUMO

A strain O4-6, which had pronounced algicidal effects to the harmful algal bloom causing alga Phaeocystis globosa, was isolated from mangrove sediments in the Yunxiao Mangrove National Nature Reserve, Fujian, China. Based on the 16S rRNA gene sequence and morphological characteristics, the isolate was found to be phylogenetically related to the genus Streptomyces and identified as Streptomyces malaysiensis O4-6. Heat stability, pH tolerance, molecular weight range and aqueous solubility were tested to characterize the algicidal compound secreted from O4-6. Results showed that the algicidal activity of this compound was not heat stable and not affected by pH changes. Residue extracted from the supernatant of O4-6 fermentation broth by ethyl acetate, was purified by Sephadex LH-20 column and silica gel column chromatography before further structure determination. Chemical structure of the responsible compound, named NIG355, was illustrated based on quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and nuclear magnetic resonance (NMR) spectra. And this compound showed a stronger algicidal activity compared with other reported algicides. Furthermore, this article represents the first report of an algicide against P. globosa, and the compound may be potentially used as a bio-agent for controlling harmful algal blooms.


Assuntos
Fatores Biológicos/toxicidade , Sedimentos Geológicos/microbiologia , Haptófitas/efeitos dos fármacos , Proliferação Nociva de Algas/efeitos dos fármacos , Água do Mar/microbiologia , Streptomyces/química , Streptomyces/metabolismo , Fatores Biológicos/química , Fatores Biológicos/isolamento & purificação , Fatores Biológicos/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , Streptomyces/genética , Streptomyces/isolamento & purificação
8.
Front Cell Infect Microbiol ; 13: 1124256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814445

RESUMO

Background and Aims: Ulcerative colitis (UC) has become a global public health concern, and is in urgent need of novel therapies. Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been applied to the treatment of UC. Despite its recent successes, it is still largely unknown how FMT functionally modulates the gut microbiota and improves the disease. Methods: We prospectively collected fecal samples from the 40 mice (30 mice for dextran sulfate sodium (DSS)-induced, 10 for controls), followed by Propidium monoazide treatment for 16S rRNA gene sequencing. These 30 mice were divided equally into 3 groups, which were transplanted with original donor microbiota (DO), inactivated donor microbiota (DI) and saline, respectively. Subsequently, we used 16S rRNA gene sequencing to analyze the viable gut bacteria of ulcerative colitis (UC) mice and histological analysis to evaluate the effects of fecal microbiota transplantation (FMT) with viable microbiota. Results: We demonstrated that the community structure of viable bacteria was significantly different from fecal bacteria based on total DNA. Furthermore, the intestinal viable microbiota and colonic mucosal structure of mice were significantly changed by DSS induction. The histological analysis showed that only the mice treated with original donor microbiota group (HF) achieved a significant improvement. Compared with inactivated donor microbiota group (IF) and saline (NF), Lactobacillus and Halomonas were significantly enriched in the HF group. Conclusion: We inferred that only live bacteria from human donor reversed the histopathology and symptoms of UC in mice and altered the gut microbiota. The activity of gut microbiota in donor samples should be considered in FMT and that detailed analysis of viable microbiota is essential to understand the mechanisms by which FMT produces therapeutic effects in the future.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Humanos , Animais , Transplante de Microbiota Fecal , RNA Ribossômico 16S , Fezes/microbiologia , Bactérias , Sulfato de Dextrana , Colite/terapia
9.
Cancers (Basel) ; 15(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37509218

RESUMO

The fecal virome has been reported to be associated with CRC. However, little is known about the mucosal virome signature in CRC. This study aimed to determine the viral community within CRC tissues and their contributions to colorectal carcinogenesis. Colonic mucosal biopsies were harvested from patients with CRC (biopsies of both neoplasia and adjacent normal tissue (CRC-A)) and healthy controls (HC). The shot-gun metagenomic sequencing of virus-like particles (VLPs) was performed on the biopsies. Viral community, functional pathways, and their correlations to clinical data were analyzed. Fluorescence in situ hybridizations (FISH) for the localization of viruses in the intestine was performed, as well as quantitative PCR for the detection of Torque teno virus load in human mucosal VLP DNA. A greater number and proportion of core species were found in CRC tissues than in CRC-A and HC tissues. The diversity of the mucosal virome in CRC tissues was significantly increased compared to that in HC and CRC-A tissues. The mucosal virome signature of CRC tissues were significantly different from those of HC and CRC-A tissues at the species level. The abundances of eukaryotic viruses from the Anelloviridae family and its sub-species Torque teno virus (TTV) were significantly higher in CRC patients than in HC. Furthermore, increased levels of TTV in the intestinal lamina propria were found in the CRC group. Multiple viral functions of TTV associated with carcinogenesis were enriched in CRC tissues. We revealed for the first time that the mucosal virobiota signature of CRC is characterized by a higher diversity and more eukaryotic viruses. The enrichment of TTV species in CRC tissues suggests that they may play an oncogenic role in CRC. Targeting eukaryotic viruses in the gut may provide novel strategies for the prevention and treatment of CRC.

10.
Biomed Pharmacother ; 159: 114300, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696803

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a common liver disease highly associated with metabolic diseases and gut dysbiosis. Several clinical trials have confirmed that fructooligosaccharides (FOSs) are a viable alternative treatment for NAFLD. However, the mechanisms underlying the activities of FOSs remain unclear. METHODS: In this study, the effects of FOSs were investigated with the use of two C57BL/6 J mouse models of NAFLD induced by a high-fat, high-cholesterol (HFHC) diet and a methionine- and choline-deficient (MCD) diet, respectively. The measured metabolic parameters included body, fat, and liver weights; and blood glucose, glucose tolerance, and serum levels of glutamate transaminase, aspartate transaminase, and triglycerides. Liver tissues were collected for histological analysis. In addition, 16 S rRNA sequencing was conducted to investigate the effects of FOSs on the composition of the gut microbiota of mice in the HFHC and MCD groups and treated with FOSs. RESULTS: FOS treatment attenuated severe metabolic changes and hepatic steatosis caused by the HFHC and MCD diets. In addition, FOSs remodeled the structure of gut microbiota in mice fed the HFHC and MCD diets, as demonstrated by increased abundances of Bacteroidetes (phylum level), Klebsiella variicola, Lactobacillus gasseri, and Clostridium perfringens (species level); and decreased abundances of Verrucomicrobia (phylum level) and the Fissicatena group (genus level). Moreover, the expression levels of genes associated with lipid metabolism and inflammation (i.e., ACC1, PPARγ, CD36, MTTP, APOC3, IL-6, and IL-1ß) were down-regulated after FOS treatment. CONCLUSION: FOSs alleviated the pathological phenotype of NAFLD via remodeling of the gut microbiota composition and decreasing hepatic lipid metabolism, suggesting that FOSs as functional dietary supplements can potentially reduce the risk of NAFLD.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Fígado , Dieta Hiperlipídica/efeitos adversos , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Metionina/metabolismo
11.
Microbiol Spectr ; 11(3): e0415222, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093057

RESUMO

Fecal microbiota transplantation (FMT) can induce clinical remission in ulcerative colitis (UC) patients. Enemas, nasoduodenal tubes, and colonoscopies are the most common routes for FMT administration. However, there is a lack of definitive evidence regarding the effectiveness of capsulized FMT treatment in UC patients. In this study, we administered capsulized FMT to 22 patients with active UC to assess the efficiency of capsulized FMT and determine the specific bacteria and metabolite factors associated with the response to clinical remission. Our results showed that the use of capsulized FMT was successful in the treatment of UC patients. Capsulized FMT induced clinical remission and clinical response in 57.1% (12 of 21) and 76.2% (16 of 21) of UC patients, respectively. Gut bacterial richness was increased after FMT in patients who achieved remission. Patients in remission after FMT exhibited enrichment of Alistipes sp. and Odoribacter splanchnicus, along with increased levels of indolelactic acid. Patients who did not achieve remission exhibited enrichment of Escherichia coli and Klebsiella and increased levels of biosynthesis of 12,13-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid) and lipopolysaccharides. Furthermore, we identified a relationship between specific bacteria and metabolites and the induction of remission in patients. These findings may provide new insights into FMT in UC treatment and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects. (This study has been registered at ClinicalTrails.gov under registration no. NCT03426683). IMPORTANCE Fecal microbiota transplantation has been successfully used in patients. Recently, capsulized FMT was reported to induce a response in patients with UC. However, limited patients were enrolled in such studies, and the functional factors of capsulized FMT have not been reported in the remission of patients with UC. In this study, we prospectively recruited patients with UC to receive capsulized FMT. First, we found that capsulized FMT could induce clinical remission in 57.1% of patients and clinical response in 76.2% after 12 weeks, which was more acceptable. Second, we found a relationship between the decrease of opportunistic pathogen and lipopolysaccharide synthesis in patients in remission after capsulized FMT. We also identified an association between specific bacteria and metabolites and remission induction in patients after capsulized FMT. These findings put forward a possibility for patients to receive FMT at home and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects.


Assuntos
Colite Ulcerativa , Doenças Transmissíveis , Microbioma Gastrointestinal , Humanos , Bactérias , Colite Ulcerativa/terapia , Colite Ulcerativa/microbiologia , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Resultado do Tratamento
12.
Sci Rep ; 13(1): 19103, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925571

RESUMO

Gastrointestinal symptoms are more prevalent in children with autism spectrum disorder (ASD) than in typically developing (TD) children. Constipation is a significant gastrointestinal comorbidity of ASD, but the associations among constipated autism spectrum disorder (C-ASD), microbiota and short-chain fatty acids (SCFAs) are still debated. We enrolled 80 children, divided into the C-ASD group (n = 40) and the TD group (n = 40). In this study, an integrated 16S rRNA gene sequencing and gas chromatography-mass spectrometry-based metabolomics approach was applied to explore the association of the gut microbiota and SCFAs in C-ASD children in China. The community diversity estimated by the Observe, Chao1, and ACE indices was significantly lower in the C-ASD group than in the TD group. We observed that Ruminococcaceae_UCG_002, Erysipelotrichaceae_UCG_003, Phascolarctobacterium, Megamonas, Ruminiclostridium_5, Parabacteroides, Prevotella_2, Fusobacterium, and Prevotella_9 were enriched in the C-ASD group, and Anaerostipes, Lactobacillus, Ruminococcus_gnavus_group, Lachnospiraceae_NK4A136_group, Ralstonia, Eubacterium_eligens_group, and Ruminococcus_1 were enriched in the TD group. The propionate levels, which were higher in the C-ASD group, were negatively correlated with the abundance of Lactobacillus taxa, but were positively correlated with the severity of ASD symptoms. The random forest model, based on the 16 representative discriminant genera, achieved a high accuracy (AUC = 0.924). In conclusion, we found that C-ASD is related to altered gut microbiota and SCFAs, especially decreased abundance of Lactobacillus and excessive propionate in faeces, which provide new clues to understand C-ASD and biomarkers for the diagnosis and potential strategies for treatment of the disorder. This study was registered in the Chinese Clinical Trial Registry ( www.chictr.org.cn ; trial registration number ChiCTR2100052106; date of registration: October 17, 2021).


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Lactobacillales , Criança , Humanos , Transtorno do Espectro Autista/terapia , Constipação Intestinal/epidemiologia , População do Leste Asiático , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/genética , Lactobacillales/genética , Propionatos , RNA Ribossômico 16S/genética , Veillonellaceae/genética
13.
Microbiol Spectr ; 11(1): e0215921, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472435

RESUMO

Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been applied to the treatment of ulcerative colitis (UC). However, preliminary trials showed that only a subset of patients responded to FMT, and the heterogeneity in donor gut microbiota probably played important roles in patients' responses, implying the significance of matching an appropriate donor to a specified patient. We developed a strategy to build a donor-recipient matching model to guide rational donor selection for UC in FMT. We collected and uniformly reanalyzed 656 fecal 16S rRNA gene sequencing samples (350 from UC patients and 306 from healthy subjects) from 9 studies. Significantly lower α-diversity indexes were observed in UC patients by random effects model. Thirty-four bacterial genera and 34 predicted pathways were identified with significant odds ratios and classification potentials for UC patients. Based on six bacterial indicators, including richness, overall distance, genera, and pathways (beneficial and harmful), the analytic hierarchy process-based donor-recipient matching model was set to rank and select appropriate donors for patients with UC. Finally, the model showed favorable classification powers (>70%) for FMT effectiveness in two previous clinical trials. This study revealed the dysbiosis of fecal bacterial diversity, composition, and predicted pathways of patients with UC by meta-analysis and hereby developed a donor-recipient matching strategy to guide donor selection for UC in FMT. This strategy can also be applied to other diseases associated with gut microbiota. IMPORTANCE Modulation of gut microbiota by FMT from donors has been applied to the treatment of UC and yielded variable effectiveness in clinical trials. One possibility is that this variable effectiveness was related to donor selection, as a patient's response to FMT may rely on the capability of the used donor's microbiota to restore the specific gut disturbances of the patient. However, the biggest issues on the practical level are what should be considered in the selection process and how to set up such a donor-recipient matching model. In this study, we presented a bacterial profile-based donor-recipient matching strategy to guide donor selection for UC in FMT by first meta-analysis of 656 fecal 16S rRNA gene sequencing samples from 9 studies to identify significant indicators and then setting up the model by an analytic hierarchy process. The applicability and accuracy of this model were verified in the data sets from two previous FMT clinical studies. Our data indicate that the donor-recipient matching model built in this study enables researchers to rationally select donors for UC patients in FMT clinical practice, although it needs more samples and prospective trials for validation. The strategy adopted in this study to leverage existing data sets to build donor-recipient matching models for precision FMT is feasible for other diseases associated with gut microbiota.


Assuntos
Colite Ulcerativa , Transplante de Microbiota Fecal , Humanos , Colite Ulcerativa/terapia , Colite Ulcerativa/microbiologia , Estudos Prospectivos , RNA Ribossômico 16S/genética , Processo de Hierarquia Analítica , Seleção do Doador , Resultado do Tratamento , Fezes/microbiologia , Bactérias/genética
14.
Nutrients ; 14(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889949

RESUMO

Obesity is a complex chronic, relapsing, progressive disease. Association studies have linked microbiome alterations with obesity and overweight. However, the results are not always consistent. An integrated analysis of 4282 fecal samples (2236 control (normal weight) group, 1152 overweight, and 894 simple obesity) was performed to identify obesity-associated microbial markers. Based on a random effects model and a fixed effects model, we calculated the odds ratios of the metrics, including bacterial alpha-diversity, beta-diversity, Bacteroidetes/Firmicutes ratio, common genera, and common pathways, between the simple obesity and control groups as well as the overweight and control groups. The random forest model was trained based on a single dataset at the genus level. Feature selection based on feature importance ranked by mean decrease accuracy and leave-one-out cross-validation was conducted to improve the predictive performance of the models. Chao1 and evenness possessed significant ORs higher than 1.0 between the obesity and control groups. Significant bacterial community differences were observed between the simple obesity and the control. The ratio of Bacteroidetes/Firmicutes was significantly higher in simple obesity patients. The relative abundance of Lachnoclostridium and Faecalitalea were higher in people with simple obesity, while 23 genera, including Christensenellaceae_R-7_group, Akkermansia, Alistipes, and Butyricimonas, etc., were significantly lower. The random forest model achieved a high accuracy (AUC = 0.83). The adenine and adenosine salvage pathway (PWY-6609) and the L-histidine degradation I pathway (HISDEG-PWY) were clustered in obese patients, while amino acid biosynthesis and degradation pathways (HISDEG-PWY, DAPLYSINESYN-PWY) were decreased. This study identified obesity microbial biomarkers, providing fertile targets for the management of obesity.


Assuntos
Microbioma Gastrointestinal , Bactérias , Biomarcadores/metabolismo , Fezes/microbiologia , Humanos , Obesidade/microbiologia , Sobrepeso , RNA Ribossômico 16S/metabolismo
15.
Front Immunol ; 13: 930872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032108

RESUMO

Type 1 diabetes mellitus (T1DM) is an autoimmune-mediated disease characterized by a reduced or absolute lack of insulin secretion and often associated with a range of vascular and neurological complications for which there is a lack of effective treatment other than lifestyle interventions and pharmacological treatments such as insulin injections. Studies have shown that the gut microbiota is involved in mediating the onset and development of many fecal and extrafecal diseases, including autoimmune T1DM. In recent years, many cases of gut microbiota transplantation for diseases of the bowel and beyond have been reported worldwide, and this approach has been shown to be safe and effective. Here, we conducted an experimental treatment study in two adolescent patients diagnosed with autoimmune T1DM for one year. Patients received one to three rounds of normal fecal microbiota transplants (FMT) and were followed for up to 30 weeks. Clinical outcomes were measured, including biochemical indices, medication regimen, and dosage adjustment. Fecal microbiota metagenomic sequencing after transplantation provides a reference for more reasonable and effective microbiota transplantation protocols to treat autoimmune T1DM. Our results suggest that FMT is an effective treatment for autoimmune T1DM. Clinical Trial Registration: http://www.chictr.org.cn, identifier ChiCTR2100045789.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Microbiota , Adolescente , Transplante de Microbiota Fecal , Fezes , Humanos
16.
Front Cell Infect Microbiol ; 12: 1086885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683707

RESUMO

Objective: Fecal microbiota transplantation (FMT) is a novel microbial treatment for patients with ulcerative colitis (UC). In this study, we performed a clinical trial of capsulized FMT in UC patients to determine the association between the gut fungal community and capsulized FMT outcomes. Design: This study recruited patients with active UC (N = 22) and healthy individuals (donor, N = 9) according to the criteria. The patients received capsulized FMT three times a week. Patient stool samples were collected before (week 0) and after FMT follow-up visits at weeks 1, 4, and 12. Fungal communities were analysed using shotgun metagenomic sequencing. Results: According to metagenomic analysis, fungal community evenness index was greater in samples collected from patients, and the overall fungal community was clustered among the samples collected from donors. The dominant fungi in fecal samples collected from donors and patients were Ascomycota and Basidiomycota. However, capsulized FMT ameliorated microbial fungal diversity and altered fungal composition, based on metagenomic analysis of fecal samples collected before and during follow-up visits after capsulized FMT. Fungal diversity decreased in samples collected from patients who achieved remission after capsulized FMT, similar to samples collected from donors. Patients achieving remission after capsulized FMT had specific enrichment of Kazachstania naganishii, Pyricularia grisea, Lachancea thermotolerans, and Schizosaccharomyces pombe compared with patients who did not achieve remission. In addition, the relative abundance of P. grisea was higher in remission fecal samples during the follow-up visit. Meanwhile, decreased levels of pathobionts, such as Candida and Debaryomyces hansenii, were associated with remission in patients receiving capsulized FMT. Conclusion: In the metagenomic analysis of fecal samples from donors and patients with UC receiving capsulized FMT, shifts in gut fungal diversity and composition were associated with capsulized FMT and validated in patients with active UC. We also identified the specific fungi associated with the induction of remission. ClinicalTrails.gov (NCT03426683).


Assuntos
Colite Ulcerativa , Transplante de Microbiota Fecal , Humanos , Colite Ulcerativa/terapia , Transplante de Microbiota Fecal/efeitos adversos , Fezes/microbiologia , Fungos/genética , Indução de Remissão , Resultado do Tratamento
17.
Front Mol Biosci ; 9: 879294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782875

RESUMO

Objective: To evaluate the protective effect of Polyethylene Glycol Loxenatide Injection (Glucagon-like peptide-1, GLP-1) on endothelial cells from middle-aged and elderly patients with newly diagnosed or poorly controlled type 2 diabetes mellitus (T2DM). GLP-1 weekly formulation was analyzed for cardiovascular disease protection and correlated with intestinal flora. Design: Stool samples were collected from middle-aged and elderly patients with new-onset or poorly controlled type 2 diabetes in Longhu People's Hospital and Shantou Central Hospital from June 2019 to November 2019. Samples were collected at week 0, 4, and 8 of treatment with GLP-1 weekly formulations. Samples were analyzed for metagenomic sequencing. Analysis was performed to compare the characteristics of the gut microbiota at week 0, 4, and 8 of GLP-1 treatment and to correlate different microbiota with characteristic clinical parameters. Results: Statistical differences were found in blood glucose lowering, cardiovascular endothelial, and inflammation-related indices between week 0 and W4 and in blood glucose lowering and cardiovascular endothelial indices from week 0 to 8 in the newly diagnosed or poorly controlled type 2 diabetic patients treated with GLP-1. Changes in gut microbiota at week 0, 4, and 8 after using GLP-1 were not statistically different, but had an overall trend of rising and then falling, and with different bacteria, that were correlated with different clinical indicators. Conclusion: GLP-1 improves endothelial cell function indicators in middle-aged and elderly diabetic patients, which may be related to its alteration of the population numbers of gut microbiota such as Acinetobacter, Eubacterium ramulus ATCC 29099, and Bacteroides_faecis. This study provides a guidance for the treatment of type 2 diabetic patients.

18.
Front Immunol ; 13: 931176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844603

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the primary causes of cirrhosis and a major risk factor for hepatocellular carcinoma and liver-related death. It has been correlated with changes in the gut microbiota, which promote its development by regulating insulin resistance, bile acid and choline metabolism, and inflammation. Recent studies suggested a controversial role of the stimulator of interferon genes (STING) in the development of NAFLD. Here, we showed that as an immune regulator, STING aggravates the progression of NAFLD in diet-induced mice and correlated it with the changes in hepatic lipid metabolism and gut microbiota diversity. After feeding wild-type (WT) and STING deletion mice with a normal control diet (NCD) or a high-fat diet (HFD), the STING deletion mice showed decreased lipid accumulation and liver inflammation compared with WT mice fed the same diet. In addition, STING specifically produced this hepatoprotective effect by inhibiting the activation of CD8+ T cells. The gut microbiota analysis revealed significant differences in intestinal bacteria between STING deletion mice and WT mice under the same diet and environmental conditions; moreover, differential bacterial genera were associated with altered metabolic phenotypes and involved in related metabolic pathways. Overall, our findings reveal the important regulatory role that STING plays in the progression of NAFLD. In addition, the change in intestinal microbiota diversity may be the contributing factor.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Bactérias , Linfócitos T CD8-Positivos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
19.
Front Cell Infect Microbiol ; 12: 1089991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704100

RESUMO

Objectives: Recent studies have shown that fecal microbiota transplantation (FMT) improved the metabolic profiles of patients with type 2 diabetes mellitus (T2DM), yet the effectiveness in reversing insulin resistance and increasing metformin sensitivity in T2DM patients have not been reported. In this study, we evaluated the improvements of T2DM patients and their gut microbiota by FMT alone and FMT plus metformin. Methods: A total of 31 patients with newly diagnosed T2DM were randomized to intervention by metformin, FMT, or FMT plus metformin in the study. Patients were followed up at baseline and week 4 after treatment. Blood and stool samples were collected and subject to analyze clinical parameters and microbial communities by metagenomic sequencing, respectively. Results: FMT alone and FMT plus metformin significantly improved the clinical indicators HOMA-IR and BMI in T2DM, besides fasting blood glucose, postprandial blood glucose, and hemoglobin A1c that were also controlled by metformin. Donor microbiota effectively colonized in T2DM with slightly higher colonization ration in FMT than FMT plus metformin within 4 weeks, resulting in increased microbial diversity and community changes from baseline after treatment. A total of 227 species and 441 species were significantly alerted after FMT and FMT plus metformin, respectively. FMT were significantly associated with the clinical parameters. Among them, Chlorobium phaeovibrioides, Bifidibacterium adolescentis and Synechococcus sp.WH8103 were potential due to their significantly negative correlations with HOMA-IR. Conclusions: FMT with or without metformin significantly improve insulin resistance and body mass index and gut microbial communities of T2DM patients by colonization of donor-derived microbiota.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Humanos , Transplante de Microbiota Fecal/métodos , Diabetes Mellitus Tipo 2/terapia , Estudos Prospectivos , Glicemia/metabolismo , Metformina/uso terapêutico , Fezes/microbiologia
20.
Front Microbiol ; 12: 724980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603252

RESUMO

Recent research has revealed the importance of the appendix in regulating the intestinal microbiota and mucosal immunity. However, the changes that occur in human gut microbial communities after appendectomy have never been analyzed. We assessed the alterations in gut bacterial and fungal populations associated with a history of appendectomy. In this cross-sectional study, we investigated the association between appendectomy and the gut microbiome using 16S and ITS2 sequencing on fecal samples from 30 healthy individuals with prior appendectomy (HwA) and 30 healthy individuals without appendectomy (HwoA). Analysis showed that the gut bacterial composition of samples from HwA was less diverse than that of samples from HwoA and had a lower abundance of Roseburia, Barnesiella, Butyricicoccus, Odoribacter, and Butyricimonas species, most of which were short-chain fatty acids-producing microbes. The HwA subgroup analysis indicated a trend toward restoration of the HwoA bacterial microbiome over time after appendectomy. HwA had higher gut fungi composition and diversity than HwoA, even 5 years after appendectomy. Compared with those in samples from HwoA, the abundance correlation networks in samples from HwA displayed more complex fungal-fungal and fungal-bacterial community interactions. This study revealed a marked impact of appendectomy on gut bacteria and fungi, which was particularly durable for fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA