Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Insect Mol Biol ; 32(3): 305-315, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36661850

RESUMO

Grapholita molesta is one of the most damaging pests worldwide in stone and pome fruits. Application of chemical pesticides is still the main method to control this pest, which results in resistance to several types of insecticides. Carboxylesterase (CarE) is one of the important enzymes involved in the detoxification metabolism and tolerance of xenobiotics and insecticides. However, the roles of CarEs in insecticides susceptibility of G. molesta are still unclear. In the present study, the enzyme activity of CarEs and the mRNA expression of six CarE genes were consistently elevated after treatment with three insecticides (emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole). According to spatio-temporal expression profiles, six CarE genes expressed differently in different developmental stages, and highly expressed in some detoxification metabolic organs. RNAi-mediated knockdown of these six CarE genes indicated that the susceptibility of G. molesta to all these three insecticides were obviously raised after GmCarE9, GmCarE14, GmCarE16, and GmCarE22 knockdown, respectively. Overall, these results demonstrated that GmCarE9, GmCarE14, GmCarE16, and GmCarE22 play a role in the susceptibility of G. molesta to emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole treatment. This study expands our understanding of CarEs in insects, that the same CarE gene could participate in the susceptibility to different insecticides.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Carboxilesterase/genética , Mariposas/genética , Larva/metabolismo
2.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563335

RESUMO

The microrheological phenomenon of kaolin-filled polypropylene (kaolin/PP) composites was investigated for the first time. The microviscosity of kaolin/PP composites was studied by changing the melt temperature and shear rate. Then, injection moulding experiments of rectangular microgrooves with different aspect ratios using kaolin/PP composites and mechanical property tests of the samples were carried out. The results showed that with increasing kaolin content, the microviscosity of the kaolin/PP composites gradually increases. The shear rate had the greatest influence on the microviscosity, and the kaolin content had the least influence. When the aspect ratio of rectangular microgrooves is small, with an increasing kaolin content, the microgroove filling rate increases, and the microstructured sample geometric shape replication effect is good; however, when the aspect ratio reaches 10:1, the microgroove filling rate decreases with an increasing kaolin content. The microstructured sample geometric shape replication effect is also poor, and size effects appear. Different factors control the microrheological morphology of composites with different aspect ratios, including the shear deformation and viscous flow of composites. The increase in kaolin content leads to a decrease in the friction coefficient and an increase in the wear resistance of the composites. We concluded that the best composite formulation for kaolin/PP composites in microinjection is the 7KL/PP composite with 7% kaolin. When the aspect ratio is 5:1, the reproduction of the microstructured sample geometry is the best, and the comprehensive mechanical properties of the sample are the best.


Assuntos
Caulim , Polipropilenos , Viscosidade
3.
Cell Immunol ; 365: 104377, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34004369

RESUMO

Leukemia associated macrophages (LAMs), which are different from tumor-associated macrophages as well as classical M1 and M2 macrophages, are specifically activated by leukemic microenvironment. We have reported the heterogeneity of gene expression profiles in LAMs. However, the expression profiles of microRNA (miRNA) in LAMs and their regulatory mechanisms have not been established. Here, the expression profiles of miRNA in LAMs from bone marrow and spleen of acute myeloid leukemia mice were analyzed. Then, the effects of miR-451a, which was upregulated in LAMs, on macrophages were studied by transfecting miRNA mimic to peritoneal macrophages. The results showed that overexpression of miR-451a altered the morphology, enhanced the phagocytic ability of macrophages, and promotes the expression of differentiation marker CD11b in macrophages. Furthermore, miR-451a increased the proliferation capacity of both M1- and M2-polarized macrophages, but not M0 macrophages. Moreover, miR-451a further enhanced the expression of iNOS upon M1 activation. Therefore, our results reveal the miRNA expression profiles in LAMs, and broaden the knowledge about miRNA regulation in macrophages.


Assuntos
Leucemia Mieloide Aguda/genética , Macrófagos/imunologia , MicroRNAs/genética , Macrófagos Associados a Tumor/imunologia , Animais , Diferenciação Celular , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Leucemia Mieloide Aguda/imunologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/genética , Células Th1/imunologia , Células Th2/imunologia , Microambiente Tumoral
4.
Med Sci Monit ; 25: 8095-8104, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31659146

RESUMO

BACKGROUND Patients with advanced non-small cell lung cancer (NSCLC) treated with cisplatin, also termed cis-diamminedichloroplatinum (CDDP) or diamminedichloroplatinum (DDP), may develop chemoresistance. This study aimed to investigate the role of long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) and multidrug resistance-1 (MDR1) in tumor tissue samples and the chemoresistant human NSCLC cell lines, H460/DDP and A549/DDP, and in a murine A549/DDP tumor xenograft. MATERIAL AND METHODS Tissue samples were from patients with NSCLC who responded cisplatin (DDP-sensitive) (n=24), patients with NSCLC unresponsive to cisplatin (DDP-resistant) (n=30), and normal lung tissue (n=25). In H460/DDP and A549/DDP cells, expression of XIST, microRNA (miR)-144-3p, MDR1, and multidrug resistance-associated protein 1 (MRP1) were detected by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The MTT assay measured cell survival and proliferation, a transwell assay evaluated cell migration, and flow cytometry measured apoptosis. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays examined the relationship between XIST and miR-144-3p. Tumor xenografts from A549/DDP cells were studied in BALB/c nude mice. RESULTS In tissue from patients with DDP-resistant NSCLC and the mouse A549/DDP tumor xenograft, lncRNA-XIST expression was upregulated and miR-144-3p expression was inhibited. In A549/DDP and H460/DDP cells, down-regulation of lncRNA-XIST and upregulation of miR-144-3p reduced cell survival, proliferation, migration, induced apoptosis and suppressed MDR1 and MRP1 expression. CONCLUSIONS Upregulation of lncRNA-XIST was associated with cisplatin resistance in NSCLC by downregulating miRNA-144-3p in H460/DDP and A549/DDP cells, a murine A549/DDP tumor xenograft, and human tumor tissues from patients with cisplatin-resistant NSCLC.


Assuntos
Cisplatino/farmacologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Células A549 , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biomacromolecules ; 19(6): 1979-1989, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29432677

RESUMO

Current implant materials have widespread clinical applications together with some disadvantages, the majority of which are the ease with which infections are induced and difficulty in exhibiting biocompatibility. For the efficient improvement of their properties, the development of interface multifunctional modification in a simple, universal, and environmently benign approach becomes a critical challenge and has acquired the attention of numerous scientists. In this study, a lysozyme-polyphosphate composite coating was fabricated for titanium(Ti)-based biomaterial to obtain a multifunctional surface. This coating was easily formed by sequentially soaking the substrate in reduced-lysozyme and polyphosphate solution. Such a composite coating has shown predominant antibacterial activity against Gram-negative bacteria ( E. coli) and improved cell adhesion, proliferation, and differentiation, which are much better than those of the pure substrate. This facile modification endows the biomaterial with anti-infective and potential bone-regenerative performance for clinical applications of biomaterial implants.


Assuntos
Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Muramidase/química , Nanoestruturas/química , Polifosfatos/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Escherichia coli/efeitos dos fármacos , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Próteses e Implantes , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Titânio/química
6.
J Am Chem Soc ; 138(35): 11117-20, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27529725

RESUMO

Polycarbonates were successfully synthesized for the first time through the anionic copolymerization of epoxides with CO2, under metal-free conditions. Using an approach based on the activation of epoxides by Lewis acids and of CO2 by appropriate cations, well-defined alternating copolymers made of CO2 and propylene oxide (PO) or cyclohexene oxide (CHO) were indeed obtained. Triethyl borane was the Lewis acid chosen to activate the epoxides, and onium halides or onium alkoxides involving either ammonium, phosphonium, or phosphazenium cations were selected to initiate the copolymerization. In the case of PO, the carbonate content of the poly(propylene carbonate) formed was in the range of 92-99% and turnover numbers (TON) were close to 500; in the case of CHO perfectly alternating poly(cyclohexene carbonate) were obtained and TON values were close to 4000. The advantages of such a copolymerization system are manifold: (i) no need for multistep catalyst/ligand synthesis as in previous works; (ii) no transition metal involved in the copolymer synthesis and therefore no coloration of the samples isolated; and (iii) no necessity for postsynthesis purification.

7.
Macromol Rapid Commun ; 35(9): 908-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24549744

RESUMO

This article reports the first fluorescent microparticles (MPs, approximately 600 nm in diameter) constructed using helical substituted polyacetylene and prepared via a precipitation polymerization approach. The MPs judiciously combine this interesting helical conjugated acetylene, fluorescent material and polymeric particles in one entity. The monomer containing a dansyl group undergoes precipitation polymerization in butanone/n-heptane mixed solvent, with (nbd)Rh(+) B(-) (C6 H5 )4 as a catalyst. MPs with a regular morphology are formed in a high yield (>80 wt%). UV-vis spectroscopy demonstrates that the polymer chains making up the MPs adopt helical structures. The MPs show considerable fluorescence emission (λmax , 500 nm; excited at 340 nm). Based on SEM and fluorescence images, the formation mechanism of the MPs is proposed. This methodology opens up new ways to prepare functional microstructured materials derived from substituted polyacetylenes, and may also result in opportunities for new practical applications of polyacetylene and its derivatives.


Assuntos
Corantes Fluorescentes/química , Poli-Inos/química , Microscopia Eletrônica de Varredura , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier
8.
ISA Trans ; 151: 409-422, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851925

RESUMO

Uncertainty can lead to jitter or overshoot in mechanical systems, necessitating the design of multiple constraints to stabilize them. This paper proposes a control structure based on the generalized Udwadia-Kalaba equation to address these constraints simultaneously. An uncertain dynamical model is developed, incorporating both equality and inequality constraints. By integrating diffeomorphism theory, a robust control strategy is designed to ensure compliance with these constraints. Utilizing the Lyapunov approach, the uniform boundedness and uniform ultimate boundedness of the dynamical system are demonstrated. Finally, the feasibility of the proposed control method is validated through its application to a belt conveyor system.

9.
J Agric Food Chem ; 72(1): 140-152, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38118125

RESUMO

Polyphenism is a beneficial way in organisms to better cope with changing circumstances and is a hot topic in entomology, evolutionary biology, and ecology. Until now, this phenomenon has been proven to be season-, density-, and diet-dependent; however, there are very few reports on temperature regulation. Cacopsylla chinensis showed seasonal polyphenism, namely as summer- and winter-form, with obvious diversity in phenotypic characteristics in response to seasonal variation. Previous studies have found that low temperature in autumn is an extremely important element in inducing summer-form change to winter-form, but the underlying regulatory mechanism is still a mystery. Herein, we provided the initial evidence that the third instar of the summer-form is the critical period for developing to the winter-form, and 10 °C induces this transition by affecting the total pigment, chitin level, and thickness of the cuticle. Second, CcTPRC3 was proven to function as a novel cold receptor to control this seasonal polyphenism. Moreover, miR-2765 was found to mediate seasonal polyphenism by inhibiting CcTRPC3 expression. Last, we found that cuticle binding proteins CcCPR4 and CcCPR9 function as the downstream signals of CcTRPC3 to regulate the seasonal polyphenism in C. chinensis. In conclusion, our results displayed a novel signal pathway of miR-2765 and CcTRPC3 for the regulation of seasonal polyphenism in C. chinensis. These findings provide insights into the comprehensive analysis of insect polyphenism and are useful in developing potential strategies to block the phase transition for the pest control of C. chinensis.


Assuntos
Hemípteros , MicroRNAs , Animais , Estações do Ano , Temperatura Baixa , Evolução Biológica , Hemípteros/genética , MicroRNAs/genética
10.
Cancer Lett ; 583: 216652, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38242196

RESUMO

Systemic iron overload is a common clinical challenge leading to significantly serious complications in patients with acute myeloid leukemia (AML), which affects both the quality of life and the overall survival of patients. Symptoms can be relieved after iron chelation therapy in clinical practice. However, the roles and mechanisms of iron overload on the initiation and progression of leukemia remain elusive. Here we studied the correlation between iron overload and AML clinical outcome, and further explored the role and pathophysiologic mechanism of iron overload in AML by using two mouse models: an iron overload MLL-AF9-induced AML mouse model and a nude xenograft mouse model. Patients with AML had an increased ferritin level, particularly in the myelomonocytic (M4) or monocytic (M5) subtypes. High level of iron expression correlated with a worsened prognosis in AML patients and a shortened survival time in AML mice. Furthermore, iron overload increased the tumor load in the bone marrow (BM) and extramedullary tissues by promoting the proliferation of leukemia cells through the upregulation of FOS. Collectively, our findings provide new insights into the roles of iron overload in AML. Additionally, this study may provide a potential therapeutic target to improve the outcome of AML patients and a rationale for the prospective evaluation of iron chelation therapy in AML.


Assuntos
Sobrecarga de Ferro , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Regulação para Cima , Qualidade de Vida , Leucemia Mieloide Aguda/genética , Ferro/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética
11.
Elife ; 122023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37965868

RESUMO

Temperature determines the geographical distribution of organisms and affects the outbreak and damage of pests. Insects seasonal polyphenism is a successful strategy adopted by some species to adapt the changeable external environment. Cacopsylla chinensis (Yang & Li) showed two seasonal morphotypes, summer-form and winter-form, with significant differences in morphological characteristics. Low temperature is the key environmental factor to induce its transition from summer-form to winter-form. However, the detailed molecular mechanism remains unknown. Here, we firstly confirmed that low temperature of 10 °C induced the transition from summer-form to winter-form by affecting the cuticle thickness and chitin content. Subsequently, we demonstrated that CcTRPM functions as a temperature receptor to regulate this transition. In addition, miR-252 was identified to mediate the expression of CcTRPM to involve in this morphological transition. Finally, we found CcTre1 and CcCHS1, two rate-limiting enzymes of insect chitin biosyntheis, act as the critical down-stream signal of CcTRPM in mediating this behavioral transition. Taken together, our results revealed that a signal transduction cascade mediates the seasonal polyphenism in C. chinensis. These findings not only lay a solid foundation for fully clarifying the ecological adaptation mechanism of C. chinensis outbreak, but also broaden our understanding about insect polymorphism.


Assuntos
Hemípteros , MicroRNAs , Animais , Temperatura , Estações do Ano , Hemípteros/fisiologia , MicroRNAs/genética , Quitina
12.
Cell Death Dis ; 14(5): 308, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149693

RESUMO

Interleukin 34 (IL-34) mainly plays physiologic and pathologic roles through the sophisticated multi-ligand signaling system, macrophage colony-stimulating factor (M-CSF, CSF-1)/IL-34-CSF-1R axis, which exhibits functional redundancy, tissue-restriction and diversity. This axis is vital for the survival, differentiation and function of monocytic lineage cells and plays pathologic roles in a broad range of diseases. However, the role of IL-34 in leukemia has not been established. Here MLL-AF9 induced mouse acute myeloid leukemia (AML) model overexpressing IL-34 (MA9-IL-34) was used to explore its role in AML. MA9-IL-34 mice exhibited accelerated disease progression and short survival time with significant subcutaneous infiltration of AML cells. MA9-IL-34 cells showed increased proliferation. In vitro colony forming assays and limiting dilution transplantation experiments demonstrated that MA9-IL-34 cells had elevated leukemia stem cell (LSC) levels. Gene expression microarray analysis revealed a panel of differential expressed genes including Sex-determining region Y (SRY)-box 13 (Sox13). Furthermore, a positive correlation between the expressions of IL-34 and Sox13 was detected human datasets. Knockdown of Sox13 rescued the enhanced proliferation, high LSC level and subcutaneous infiltration in MA9-IL-34 cells. Moreover, more leukemia-associated macrophages (LAMs) were detected in MA9-IL-34 microenvironment. Additionally, those LAMs showed M2-like phenotype since they expressed high level of M2-associated genes and had attenuated phagocytic potential, suggesting that LAMs should also contribute to IL-34 caused adverse phenotypes. Therefore, our findings uncover the intrinsic and microenvironmental mechanisms of IL-34 in AML and broadens the knowledge of M-CSF/IL-34-CSF-1R axis in malignancies.


Assuntos
Leucemia Mieloide Aguda , Fator Estimulador de Colônias de Macrófagos , Humanos , Animais , Camundongos , Leucemia Mieloide Aguda/metabolismo , Macrófagos/metabolismo , Interleucinas/genética , Diferenciação Celular , Microambiente Tumoral , Autoantígenos , Fatores de Transcrição SOXD
13.
Macromol Rapid Commun ; 33(8): 652-7, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22318956

RESUMO

This Communication reports optically active helical substituted polyacetylenes which solely catalyzed asymmetric Aldol reaction between cyclohexanone and p-nitrobenzaldehyde; more importantly the helical structures are found to play crucial roles in the asymmetric catalysis, with a remarkable yield and ee (both up to 80%). A synergic effect is observed between the helical structures in the polymer main chains and the pendent prolinamide moieties for successfully catalyzing the asymmetric reaction. The role of the helical polymer backbones is further verified by tuning the relative helical structure content.


Assuntos
Aldeídos/química , Materiais Biomiméticos/química , Polímeros/química , Benzaldeídos/química , Materiais Biomiméticos/metabolismo , Catálise , Dicroísmo Circular , Cicloexanonas/química , Enzimas/metabolismo
14.
Stem Cell Res Ther ; 13(1): 245, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690796

RESUMO

BACKGROUND: The ubiquitin-proteasome system plays important roles in maintaining the self-renewal and differentiation of stem and progenitor cells through highly ordered degradation of cellular proteins. Fbxw11, an E3 ligase, participates in many important biological processes by targeting a broad range of proteins. However, its roles in hematopoietic stem/progenitor cells (HSPCs) have not been established. METHODS: In this study, the effects of Fbxw11 on HSPCs were studied in vitro and in vivo by an overexpression strategy. Real-time PCR was performed to detect the expression of Fbxw11 in hematopoietic subpopulations. Colony-forming assays were performed to evaluate the in vitro function of Fbxw11 on HSPCs. Hoechst 33342 and Ki67 staining was performed to determine the cell-cycle distribution of HSPCs. Competitive transplantation experiments were used to evaluate the effect of Fbxw11 on the reconstitution potential of HSPCs. Single-cell RNA sequencing (scRNA-seq) was employed to reveal the transcriptomic alterations in HSPCs. RESULTS: The expression of Fbxw11 was higher in Lin-c-Kit+Sca-1+ (LSK) cells and myeloid progenitors than in lymphoid progenitors. Fbxw11 played negative roles in colony-forming and quiescence maintenance of HSPCs in vitro. Furthermore, serial competitive transplantation experiments revealed that Fbxw11 impaired the repopulation capacity of HSPCs. The proportion of granulocytes (Gr-1+CD11b+) in the differentiated mature cells was significantly higher than that in the control group, T cells and B cells were lower. Moreover, scRNA-seq revealed seven cell clusters in HSPCs. In addition, Fbxw11 downregulated the expression of Cebpa, Myc and Arid5b, which are significant regulators of HSPC activity, in most cell clusters. CONCLUSION: Our data demonstrate that Fbxw11 plays a negative role in the maintenance of HSPCs in vitro and repopulation capacity in vivo. Our data also provide valuable transcriptome references for HSPCs in homeostasis.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Ciclo Celular , Diferenciação Celular , Divisão Celular , Células-Tronco Hematopoéticas/metabolismo
15.
Oncogene ; 41(16): 2303-2314, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35256780

RESUMO

Interferon regulatory factor 7 (IRF7) is widely studied in inflammatory models. Its effects on malignant progression have been documented mainly from the perspective of the microenvironment. However, its role in leukemia has not been established. Here we used MLL-AF9-induced acute myeloid leukemia (AML) mouse models with IRF7 knockout or overexpression and xenograft mouse models to explore the intrinsic effects of IRF7 in AML. AML-IRF7-/- mice exhibited accelerated disease progression with intracerebral invasion of AML cells. AML-IRF7-/- cells showed increased proliferation and elevated leukemia stem cell (LSC) levels. Overexpression of IRF7 in AML cells decreased cell proliferation and LSC levels. Furthermore, overexpression of transforming growth-interacting factor 1 (TGIF1) rescued the enhanced proliferation and high LSC levels caused by IRF7 deficiency. Moreover, upregulation of vascular cell adhesion molecule 1 (VCAM1), which correlated with high LSC levels, was detected in AML-IRF7-/- cells. In addition, blocking VCAM1-very late antigen 4 (VLA-4) axis delayed disease progression and attenuated intracerebral invasion of AML cells. Therefore, our findings uncover the intrinsic effects of IRF7 in AML and provide a potential strategy to control central nervous system myeloid leukemia.


Assuntos
Integrina alfa4beta1 , Fator Regulador 7 de Interferon , Leucemia Mieloide Aguda , Animais , Modelos Animais de Doenças , Progressão da Doença , Proteínas de Homeodomínio/metabolismo , Humanos , Integrina alfa4beta1/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Proteínas Repressoras/metabolismo , Microambiente Tumoral/genética , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
Materials (Basel) ; 14(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34772235

RESUMO

To provide the most effective comprehensive performance grouting material ratio, in this experimental investigation, a total of eight grouted specimens with two water-cement ratios (0.45:1, 0.55:1) and four different superfine cement contents (0%, 30%, 70%, 100%) were evaluated. Based on a uniaxial compression test, the fractal dimension of the fragments, a mercury injection test, and scanning electron microscopy, the effects of the superfine cement content on the strength characteristics and microscopic characteristics of the grouted specimens were studied. The results showed that increasing the superfine cement content could enhance the compressive and tensile strength of the grouted specimens and reduce the fractal dimension of the fragments and the porosity of the grouted specimens. The superfine cement content increased from 0% to 70% when the water-cement ratio was 0.45:1. The compressive strength of the grouted specimens increased from 16.7 MPa to 26.3 MPa, and the fractal dimension decreased from 1.8645 to 1.2301. When the water-cement ratio was 0.55:1, the compressive strength of the grouted specimens increased from 10.5 MPa to 20.6 MPa, and the fractal dimension value decreased from 2.2955 to 1.4458. When the superfine cement content increased from 0% to 100%, the water-cement ratio was 0.45:1. The porosity of the grouted specimens was reduced from 28.41% to 21.62%. When the water-cement ratio was 0.55:1, the porosity of the grouted specimens was reduced from 33.33% to 29.46%.

17.
J Mater Chem B ; 9(3): 767-782, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33326551

RESUMO

The ingenious design of multi-functional materials to simultaneously achieve the accurate detection of targets and effective treatment of target-related diseases is of great significance for both practical and clinical applications. Accordingly, based on their advantages of facile synthesis and function designability, functional nanomaterials have become promising candidates for integrating multi-functionality into one platform, especially carbon dot (CD)-based materials. Herein, deferoxamine (DFO)-inspired CDs with integrated "sense and treatment" potential were elaborately designed and fabricated via a one-pot hydrothermal synthesis by employing l-aspartic acid (Asp) and 2,5-diaminobenzenesulfonic acid (DABSA) as the reactants. A series of characterization results distinctly confirmed that the synthesized CDs possessed a unique chemical composition, uniform spherical morphology (diameter of around 5 nm) and good dispersibility in aqueous solution, exhibiting excellent fluorescence stability under different conditions. Owing to the complexation interaction between Fe3+ and the functional groups of CDs, the selective and sensitive detection of Fe3+ could be successfully realized through fluorescent and colorimetric dual-mode detection based on the statistic quenching in the initial stage, and subsequently the FRET process. Furthermore, these CDs could be utilized for cellular imaging and effective Fe3+ detection due to their outstanding biocompatibility and cytoplasmatic distribution. More significantly, these DFO-inspired CDs could remarkably promote the proliferation of various mammalian cells. Particularly, the results in this work obviously indicated that this type of CDs could weaken the damage of Fe3+ towards the physiological behaviors of cells, helping the cells to regain their capability of differentiation after ferric toxicosis. Therefore, this work presents an original approach for the design and fabrication of multi-functional materials according to the "one stone, three birds" strategy, which may be an optional solution to develop various multi-functional platforms for disease diagnosis and corresponding clinical treatment.


Assuntos
Carbono/química , Compostos Férricos/análise , Pontos Quânticos/química , Células 3T3 , Animais , Células Cultivadas , Camundongos , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Ratos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 119033, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33045482

RESUMO

Considering that detection on cations or ions still meets some challenges in achieving the effectivity and selectivity just by employing one platform, the ingenious fabrication of nanomaterials exhibits an increasing research interests for the preponderance in improving or integrating the performance of single platform. Herein, a fluorescent hybrid nanomaterials based on an organic dye 4-methylumbelliferone (4-MU) as modifier and D-arginine as carbon cores has been developed via a facile one-step hydrothermal synthesis, forming carbon dots (CDs)/4-MU hybrid nanomaterials (CDs-4-MU). This kind of nanomaterials can improve the sensitive and selective detection of single CDs towards Fe3+ ions in different matrices. The detection mechanism of CDs-4-MU towards Fe3+ can be attributed to an electron transfer process between CDs-4-MU and Fe3+, leading to the fluorescence quenching. The limit of detection (LOD) and corresponding linear range in tris-HCl buffer solution are 0.68 µM and 2.29-200 µM, respectively. Furthermore, this nanomaterial can also achieve a detection of Fe3+ ions in real samples such as tap water, culture medium and fetal bovine serum. In particular, CDs-4-MU exhibits a good biocompatibility and can be uptaken by MC3T3 cells, thus can be applied for Fe3+ ions detection in cellular level and cellular imaging. Therefore, this work provides a versatile strategy for the synthesis of CDs-based hybrid nanomaterials and opens a new pathway for improving the ion detection in real samples, which is of significance in practical applications.


Assuntos
Nanoestruturas , Pontos Quânticos , Carbono , Corantes Fluorescentes , Espectrometria de Fluorescência
19.
ACS Appl Mater Interfaces ; 13(13): 15709-15719, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755430

RESUMO

Natural intervertebral disks (IVDs) exhibit distinctive anisotropic mechanical support and dissipation performances due to their well-developed special microstructures. As the intact IVD structure degrades, the absence of function will lead to severe backache. However, the complete simulation for the characteristic structure and function of native IVD is unattainable using current methods. In this work, by overall construction of the two-phase structure of native IVD (extraction of the naturally aligned cellulose framework and in situ polymerization of the nanocomposite hydrogel), a complete wood framework IVD (WF-IVD) is manufactured containing elastic nanocomposite hydrogel-based nucleus pulposus (NP) and anisotropic wood cellulose hydrogel-based annulus fibrosus (AF). In addition to the imitation and construction of the natural structure, WF-IVD also achieves favorable mechanical matching and good biocompatibility and possesses unique mechanical buckling buffer characteristics owing to the aligned fiber bundles. This study offers a promising strategy for the mimicking and construction of complex native tissues.


Assuntos
Materiais Biomiméticos/química , Celulose/química , Hidrogéis/química , Disco Intervertebral/química , Alicerces Teciduais/química , Animais , Anisotropia , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Biomimética , Soluções Tampão , Linhagem Celular , Fagus/química , Disco Intervertebral/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Engenharia Tecidual/métodos , Madeira/química
20.
Blood Sci ; 3(2): 48-56, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35402828

RESUMO

Interleukin 34 (IL-34) is a cytokine that shares the receptor with colony-stimulating factor 1 (CSF-1). IL-34 is involved in a broad range of pathologic processes including cancer. We previously demonstrated that IL-34 promoted the proliferation and colony formation of human acute monocytic leukemia (AMoL) cells. However, the mechanism has not been elucidated. Here, by analyzing the gene profiles of Molm13 and THP1 cells overexpressing IL-34 (Molm13-IL-34 and THP1-IL-34), upregulation of the DNA damage-inducible transcript 4 (DDIT4) was detected in both series. Knockdown of DDIT4 effectively inhibited the proliferation, promoted apoptosis and colony formation in Molm13-IL-34 and THP1-IL-34 cells. Our results suggest that DDIT4 mediates the proliferation-promotive effect of IL-34 whereas does not mediate the promotive effect of IL-34 on colony formation in AMoL cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA