Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 74(12): 2987-2996, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27997408

RESUMO

Extracellular polymeric substances (EPS) play crucial roles in bio-aggregate formation and survival of bacterial cells. To develop an effective but harmless method for EPS extraction from Shewanella oneidensis MR-1, five extraction methods, i.e. centrifugation (control), heating (40, 45, 50, and 60 °C), and treatments with H2SO4, ethylenediaminetetraacetic acid (EDTA) and NaOH, were examined, respectively. Results from scanning electron microscope and flow cytometric analyses indicate that MR-1 cells were severely broken by H2SO4, NaOH and heating temperature ≥45 °C. Proteins and polysaccharides in EPS extracted by heating at 40 °C were 7.12 and 1.60 mg g-1 dry cell, respectively. Although EDTA treatment had a relatively lower yield of EPS (proteins and polysaccharides yields of 5.15 and 1.30 mg g-1 dry cell, respectively), cell lysis was barely found after EPS extraction. Three peaks were identified from the three-dimensional excitation-emission matrix spectrum of each EPS sample, suggesting the presence of protein-like substances. Furthermore, the peak intensity was in good accordance with protein concentration measured by the chemical analysis. In short, heating (40 °C) and EDTA treatments were found the most suitable methods for EPS extraction considering the cell lysis and EPS content, composition and functional groups together.


Assuntos
Biopolímeros/isolamento & purificação , Fracionamento Químico/métodos , Polissacarídeos/isolamento & purificação , Proteínas/isolamento & purificação , Shewanella/química , Citometria de Fluxo , Microscopia Eletrônica de Varredura , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Front Microbiol ; 6: 1410, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733958

RESUMO

Bioelectrochemical systems (BESs) are promising technologies for energy and product recovery coupled with wastewater treatment, and the core microbial community in electrochemically active biofilm in BESs remains controversy. In the present study, 7 anodic communities from 6 bioelectrochemical systems in 4 labs in southeast, north and south-central of China are explored by 454 pyrosequencing. A total of 251,225 effective sequences are obtained for 7 electrochemically active biofilm samples at 3% cutoff level. While Alpha-, Beta-, and Gamma-proteobacteria are the most abundant classes (averaging 16.0-17.7%), Bacteroidia and Clostridia are the two sub-dominant and commonly shared classes. Six commonly shared genera i.e., Azospira, Azospirillum, Acinetobacter, Bacteroides, Geobacter, Pseudomonas, and Rhodopseudomonas dominate the electrochemically active communities and are defined as core genera. A total of 25 OTUs with average relative abundance >0.5% were selected and designated as core OTUs, and some species relating to these OTUs have been reported electrochemically active. Furthermore, cyclic voltammetry and chronoamperometry tests show that two strains from Acinetobacter guillouiae and Stappia indica, bacteria relate to two core OTUs, are electrochemically active. Using randomly selected bioelectrochemical systems, the study has presented extremely diverse bacterial communities in anodic biofilms, though, we still can suggest some potentially microbes for investigating the electrochemical mechanisms in bioelectrochemical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA