Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2217148120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36630453

RESUMO

Modulation of water activation is crucial to water-involved chemical reactions in heterogeneous catalysis. Organic sulfur (COS and CS2) hydrolysis is such a typical reaction involving water (H2O) molecule as a reactant. However, limited by the strong O-H bond in H2O, satisfactory CS2 hydrolysis performance is attained at high temperature above 310 °C, which is at the sacrifice of the Claus conversion, strongly hindering sulfur recovery efficiency improvement and pollution emissions control of the Claus process. Herein, we report a facile oxygen vacancy (VO) engineering on titanium-based perovskite to motivate H2O activation for enhanced COS and CS2 hydrolysis at lower temperature. Increased amount of VO contributed to improved degree of H2O dissociation to generate more active -OH, due to lower energy barrier for H2O dissociation over surface rich in VO, particularly VO clusters. Besides, low-coordinated Ti ions adjacent to VO were active sites for H2O activation. Consequently, complete conversion of COS and CS2 was achieved over SrTiO3 after H2 reduction treatment at 225 °C, a favorable temperature for the Claus conversion, at which both satisfying COS and CS2 hydrolysis performance and improved sulfur recovery efficiency can be obtained simultaneously. Additionally, the origin of enhanced hydrolysis activity from boosted H2O activation by VO was revealed via in-depth mechanism study. This provides more explicit direction for further design of efficacious catalysts for H2O-involved reactions.


Assuntos
Oxigênio , Titânio , Temperatura , Hidrólise , Água/química , Enxofre
2.
Acc Chem Res ; 56(2): 169-186, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36571794

RESUMO

ConspectusThe past decades have witnessed tremendous progress on radical reactions. However, in comparison with carbon, nitrogen, oxygen, and other main group element centered radicals, the synthetic chemistry of boron centered radicals was less studied, mainly due to the high electron-deficiency and instability of such 3-center-5-electron species. In the 1980s, Roberts and co-workers found that the coordination of a Lewis base (amines or phosphines) with the boron center could form 4-center-7-electron boryl radicals (Lewis base-boryl radicals, LBRs) that are found to be more stable. However, only limited synthetic applications were developed. In 2008, Curran and co-workers achieved a breakthrough with the discovery of N-heterocyclic carbene (NHC) boryl radicals, which could enable a range of radical reduction and polymerization reactions. Despite these exciting findings, more powerful and valuable synthetic applications of LBRs would be expected, given that the structures and reactivities of LBRs could be easily modulated, which would provide ample opportunities to discover new reactions. In this Account, a summary of our key contributions in LBR-enabled radical borylation reactions and selective activation of inert carbon-heteroatom bonds will be presented.Organoboron compounds have shown versatile applications in chemical society, and their syntheses rely principally on ionic borylation reactions. The development of mechanistically different radical borylation reactions allows synthesizing products that are inaccessible by traditional methods. For this purpose, we progressively developed a series of NHC-boryl radical mediated chemo-, regio-, and stereoselective radical borylation reactions of alkenes and alkynes, by which a wide variety of structurally diverse organoboron molecules were successfully prepared. The synthetic utility of these borylated products was also demonstrated. Furthermore, we disclosed a photoredox protocol for oxidative generation of NHC-boryl radicals, which enabled useful defluoroborylation and arylboration reactions.Selective bond activation is an ideal way to convert simple starting materials to value-added products, while the cleavage of inert chemical bonds, in particular the chemoselectivity control when multiple identical bonds are present in similar chemical environments, remains a long-standing challenge. We envisaged that finely tuning the properties of LBRs might provide a new solution to address this challenge. Recently, we disclosed a 4-dimethylaminopyridine (DMAP)-boryl radical promoted sequential C-F bond functionalization of trifluoroacetic acid derivatives, in which the α-C-F bonds were selectively snipped via a spin-center shift mechanism. This strategy enables facile conversion of abundantly available trifluoroacetic acid to highly valuable mono- and difluorinated molecules. Encouraged by this finding, we further developed a boryl radical enabled three-step sequence to construct all-carbon quaternary centers from a range of trichloromethyl groups, where the three C-Cl bonds were selectively cleaved by the rational choice of suitable boryl radical precursors in each step. Furthermore, a boryl radical promoted dehydroxylative alkylation of α-hydroxy carboxylic acid derivatives was achieved, allowing for the efficient conversion of some biomass platform molecules to high value products.

3.
Environ Sci Technol ; 58(4): 2153-2161, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38244211

RESUMO

Nitrous oxide (N2O) has a detrimental impact on the greenhouse effect, and its efficient catalytic decomposition at low temperatures remains challenging. Herein, the cobalt-based high-entropy oxide with a spinel-type structure (Co-HEO) is successfully fabricated via a facile coprecipitation method for N2O catalytic decomposition. The obtained Co-HEO catalyst displays more remarkable catalytic performance and higher thermal stability compared with single and binary Co-based oxides, as the temperature of 90% N2O decomposition (T90) is 356 °C. A series of characterization results reveal that the synergistic effect of multiple elements enhances the reducibility and augments oxygen vacancy in the high-entropy system, thus boosting the activity of the Co-HEO catalyst. Moreover, density functional theory (DFT) calculations and the temperature-programmed surface reaction (TPSR) with isotope labeling demonstrate that N2O decomposition on the Co-HEO catalyst follows the Langmuir-Hinshelwood (L-H) mechanism with the promotion of abundant oxygen vacancies. This work provides a fundamental understanding of the synergistic catalytic effect in N2O decomposition and paves the way for the novel environmental catalytic applications of HEO.


Assuntos
Cobalto , Óxidos , Entropia , Óxidos/química , Cobalto/química , Oxigênio
4.
Angew Chem Int Ed Engl ; 63(16): e202400627, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38390644

RESUMO

Metal-modified catalysts have attracted extraordinary research attention in heterogeneous catalysis due to their enhanced geometric and electronic structures and outstanding catalytic performances. Silver (Ag) possesses necessary active sites for ethylene epoxidation, but the catalyst activity is usually sacrificed to obtain high selectivity towards ethylene oxide (EO). Herein, we report that using Al can help in tailoring the unoccupied 3d state of Ag on the MnO2 support through strong electronic metal-support interactions (EMSIs), overcoming the activity-selectivity trade-off for ethylene epoxidation and resulting in a very high ethylene conversion rate (~100 %) with 90 % selectivity for EO under mild conditions (170 °C and atmospheric pressure). Structural characterization and theoretical calculations revealed that the EMSIs obtained by the Al modification tailor the unoccupied 3d state of Ag, modulating the adsorption of ethylene (C2H4) and oxygen (O2) and facilitating EO desorption, resulting in high C2H4 conversion. Meanwhile, the increased number of positively charge Ag+ lowers the energy barrier for C2H4(ads) oxidation to produce oxametallacycle (OMC), inducing the unexpectedly high EO selectivity. Such an extraordinary electronic promotion provides new promising pathways for designing advanced metal catalysts with high activity and selectivity in selective oxidation reactions.

5.
Angew Chem Int Ed Engl ; 63(25): e202405863, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38589298

RESUMO

Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a ß-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.

6.
J Biol Chem ; 298(5): 101847, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314195

RESUMO

Although capsaicin has been studied extensively as an activator of the transient receptor potential vanilloid cation channel subtype 1 (TRPV1) channels in sensory neurons, little is known about its TRPV1-independent actions in gastrointestinal health and disease. Here, we aimed to investigate the pharmacological actions of capsaicin as a food additive and medication on intestinal ion transporters in mouse models of ulcerative colitis (UC). The short-circuit current (Isc) of the intestine from WT, TRPV1-, and TRPV4-KO mice were measured in Ussing chambers, and Ca2+ imaging was performed on small intestinal epithelial cells. We also performed Western blots, immunohistochemistry, and immunofluorescence on intestinal epithelial cells and on intestinal tissues following UC induction with dextran sodium sulfate. We found that capsaicin did not affect basal intestinal Isc but significantly inhibited carbachol- and caffeine-induced intestinal Isc in WT mice. Capsaicin similarly inhibited the intestinal Isc in TRPV1 KO mice, but this inhibition was absent in TRPV4 KO mice. We also determined that Ca2+ influx via TRPV4 was required for cholinergic signaling-mediated intestinal anion secretion, which was inhibited by capsaicin. Moreover, the glucose-induced jejunal Iscvia Na+/glucose cotransporter was suppressed by TRPV4 activation, which could be relieved by capsaicin. Capsaicin also stimulated ouabain- and amiloride-sensitive colonic Isc. Finally, we found that dietary capsaicin ameliorated the UC phenotype, suppressed hyperaction of TRPV4 channels, and rescued the reduced ouabain- and amiloride-sensitive Isc. We therefore conclude that capsaicin inhibits intestinal Cl- secretion and promotes Na+ absorption predominantly by blocking TRPV4 channels to exert its beneficial anti-colitic action.


Assuntos
Capsaicina , Colite , Canais de Cátion TRPV , Amilorida , Animais , Capsaicina/farmacologia , Cloretos/metabolismo , Colite/tratamento farmacológico , Colo/metabolismo , Glucose , Camundongos , Camundongos Knockout , Ouabaína , Sódio/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores
7.
J Am Chem Soc ; 144(33): 15275-15285, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35950969

RESUMO

The construction of diversely substituted all-carbon quaternary centers has been a longstanding challenge in organic synthesis. Methods that add three alkyl substituents to a simple C(sp3) atom rely heavily on lengthy multiple processes, which usually involve several preactivation steps. Here, we describe a straightforward three-step sequence that uses a range of readily accessible activated trichloromethyl groups as the carbon source, the three C-Cl bonds of which are selectively functionalized to introduce three alkyl chains. In each step, only a single C-Cl bond was cleaved with the choice of an appropriate Lewis base-boryl radical as the promoter. A vast range of diversely substituted all-carbon quaternary centers could be accessed directly from these activated CCl3 trichloromethyl groups or by simple derivatizations. The use of different alkene traps in each of the three steps enabled facile collections of a large library of products. The utility of this strategy was demonstrated by the synthesis of variants of two drug molecules, whose structures could be easily modulated by varying the alkene partner in each step. The results of kinetic and computational studies enabled the design of the three-step reaction and provided insights into the reaction mechanisms.


Assuntos
Alcenos , Carbono , Alcenos/química , Carbono/química , Técnicas de Química Sintética
8.
Pharmazie ; 77(3): 125-130, 2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35459442

RESUMO

Mental health disorders such as stress, anxiety, depression and insomnia caused by COVID-19 have attracted worldwide attention. Traditional Chinese medicines (TCMs) have been proven to be a safe and effective option for treating mental health disorders. Recently, after assessing its efficacy and safety fully, the Netherlands Medicines Evaluation Board approved XiaoYao Tablets as a traditional herbal medicinal product (THMP), indicated for an alternative self-care for patients in Europe to relieve the symptoms of mental stress and exhaustion. Despite the fact that TCMs have gradually become one of the therapeutic choices worldwide, to-date, only a few TCMs have been successfully registered in the European Union (EU) as THMPs, and XiaoYao Tablets is the first successfully registered combination TCM from China. In this article, traditional use efficacy and clinical safety of XiaoYao Tablets in the treatment of mental health disorders were summarized and analyzed from the perspective of traditional use registration (TUR). Additionally a safety evolution pathway of combination TCMs was established. This article will not only seek to enhance our understanding about traditional use efficacy and clinical safety of XiaoYao Tablets, but also summarize the experience of XiaoYao Tablets as the first successfully registered combination TCM from China, which could serve as role model for the others to overcome registration difficulties in the EU.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/efeitos adversos , Humanos , Medicina Tradicional Chinesa , Comprimidos
9.
Angew Chem Int Ed Engl ; 61(25): e202201329, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35388555

RESUMO

A strategically distinct dehydroxylative alkylation reaction of α-hydroxy carboxylic acid derivatives with alkenes is developed. The reaction starts with the attack of a 4-dimethylaminopyridine (DMAP)-boryl radical to the carbonyl oxygen atom, followed by a spin-center shift (SCS) to trigger the C-O bond scission. The resulting α-carbonyl radicals couple with a wide range of alkenes to furnish various alkylated products. This strategy allows for the efficient conversion of a wide array of α-hydroxy amides and esters derived from several biomass molecules and natural products to value-added compounds. Experimental and computational studies verified the reaction mechanism.


Assuntos
Alcenos , Ésteres , Alcenos/química , Alquilação , Amidas
10.
Chemistry ; 27(2): 581-584, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32865264

RESUMO

An efficient direct aldol reaction between coumaran-3-ones and ß, γ-unsaturated α-ketoesters by virtue of a chiral copper complex is developed. A series of coumaran-3-one derivatives containing chiral tertiary alcohol structures are obtained in excellent yields and stereoselectivities.

11.
Org Biomol Chem ; 18(26): 4922-4926, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573645

RESUMO

The selective N-monomethylation of primary anilines was realized by the use of the Me3N-BH3/N,N-dimethylformamide (DMF) system as the methyl source. This method also allows for the controllable introduction of N-CH2D, N-CHD2, and N-CD3 units with high levels of deuterium incorporation using Me3N-BH3/d7-DMF, Me3N-BD3/DMF and Me3N-BD3/d7-DMF systems, respectively.

12.
Angew Chem Int Ed Engl ; 59(31): 12876-12884, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32232933

RESUMO

Radical borylation using N-heterocyclic carbene (NHC)-BH3 complexes as boryl radical precursors has emerged as an important synthetic tool for organoboron assembly. However, the majority of reported methods are limited to reaction modes involving carbo- and/or hydroboration of specific alkenes and alkynes. Moreover, the generation of NHC-boryl radicals relies principally on hydrogen atom abstraction with the aid of radical initiators. A distinct radical generation method is reported, as well as the reaction pathways of NHC-boryl radicals enabled by photoredox catalysis. NHC-boryl radicals are generated via a single-electron oxidation and subsequently undergo cross-coupling with the in-situ-generated radical anions to yield gem-difluoroallylboronates. A photoredox-catalyzed radical arylboration reaction of alkenes was achieved using cyanoarenes as arylating components from which elaborated organoborons were accessed. Mechanistic studies verified the oxidative formation of NHC-boryl radicals through a single-electron-transfer pathway.

13.
J Cell Biochem ; 120(7): 11432-11440, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30756420

RESUMO

Patients with cervical cancer have abnormal cell proliferation and invasion after many years of latency. However, the precise mechanisms remain unclear. Mitogen- and stress-activated kinase 2 (MSK2) is a serine/threonine kinase which displays a phenotype that promotes tumor growth and metastasis in many different types of tumors. The aim of the present study was to determine the effects of MSK2 on the proliferation of cervical cancer cells and elucidate the signaling pathways through which MSK2 exerts its effects in the pathogenesis of squamous cell carcinoma (SCC). Our results confirmed that MSK2 expression was significantly upregulated in cervical cancer cells both in vivo and in vitro. We further found that the expression patterns of paired-box gene 8 (PAX8) and MSK2 were positively correlated in cervical cancer specimens. Moreover, MSK2 knockdown inhibited the phosphorylation of PAX8 and retinoblastoma protein (RB), and suppressed the sequential expressions of cell proliferation factors E2F1 and cyclin A2, resulting in the inhibition of SCC cell proliferation and tumor formation. Thus, this study demonstrates that MSK2 has oncogenic effects in the formation and development of SCC via the PAX8/RB-E2F1/cyclin A2 axis.

14.
J Cell Biochem ; 120(5): 8228-8237, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30474880

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) has a high morbidity and mortality around the world, yet the effective therapeutic option for HCC is still limited. NPAC, also known as glyoxylate reductase 1 homolog, is a new nuclear protein recently implicated in tumor biology. However, the role of NPAC in HCC remains unclear. The present study aimed to evaluate the clinical significance and potential role of NPAC in HCC. METHODS: The NPAC expression in HCC tissues and matched adjacent normal tissues was detected by real-time polymerase chain reaction, immunohistochemistry (IHC), and Western blot analysis. The clinical significance of the expression of NPAC in HCC was assessed by the Kaplan-Meier survival curve and the Cox regression model. In addition, we established a doxiline-induced overexpression of the NPAC system. The effects of NPAC on HCC cell proliferation, migration, and apoptosis were checked by CCK-8 proliferation assays, transwell, and flow cytometry, respectively. RESULTS: The NPAC expression was significantly downregulated in HCC tissues and HCC cell lines. NPAC reduction was significantly correlated with poorer survival among patients with HCC, and the multivariate analysis confirmed its independent prognostic value. Furthermore, overexpression of NPAC dramatically suppressed the proliferation of HCC cells and promoted HCC cells apoptosis. Besides, the levels of phosphorylation of janus kinase 2 (JAK2) and signal transduction and activator 3 (STAT3) were significantly reduced after overexpression of NPAC in HCC cell lines. CONCLUSIONS: These results suggest that NPAC may play an important role in the development and progression of HCC, and can act as a novel potential prognostic biomarker and therapeutic target for HCC.

15.
Analyst ; 145(1): 46-51, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31755892

RESUMO

Development of a simple, fast, cost-efficient and sensitive approach for accurate protein analysis is of high significance due to its potential application in disease diagnosis and biomedicine research. Thus, we established a label-free fluorescence DNA walker for streptavidin detection based on terminal protection and dual enzyme assisted cleavage induced G-quadruplex/berberine conformation. In this paper, the swing arm probe and report probe were pre-assembled on gold nanoparticles. With the addition of a target, through the high-efficiency affinity between streptavidin and biotin in order to prevent the hydrolysis of exonuclease I, the swing arm probe which contains 8-17 DNAzyme cannot be destroyed and plays a role in the catalytic cleavage of the report probe, and the liberating fragment of the report probe which contains a specific sequence (5'-(TTAGGG)4) of G-quadruplex units can combine with berberine and shows an evident fluorescence signal enhancement. Our method, a sensitive and selective method of protein detection, achieves a 20 pM detection limit toward streptavidin. This developed DNA walker, which combines terminal protection and a dual enzyme assisted strategy, provides a prospective channel for streptavidin detection and should also be used for the design of biosensors in bio-detection and disease diagnosis.


Assuntos
Berberina/química , Sondas de DNA/química , DNA Catalítico/química , Quadruplex G , Estreptavidina/análise , Técnicas Biossensoriais/métodos , Biotina/química , Sondas de DNA/genética , DNA Catalítico/genética , Exodesoxirribonucleases/química , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos , Estreptavidina/química
16.
Angew Chem Int Ed Engl ; 57(36): 11770-11775, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968283

RESUMO

A new and practical α-monomethylation strategy using an amine-borane/N,N-dimethylformamide (R3 N-BH3 /DMF) system as the methyl source was developed. This protocol has been found to be effective in the α-monomethylation of arylacetonitriles and arylacetamides. Mechanistic studies revealed that the formyl group of DMF delivered the carbon and one hydrogen atoms of the methyl group, and R3 N-BH3 donated the remaining two hydrogen atoms. Such a unique reaction pathway enabled controllable assemblies of CDH2 -, CD2 H-, and CD3 - units using Me2 NH-BH3 /d7 -DMF, Me3 N-BD3 /DMF and Me3 N-BD3 /d7 -DMF systems, respectively. Further application of this method to the facile synthesis of anti-inflammatory flurbiprofen and its varied deuterium-labeled derivatives was demonstrated.

17.
J Am Chem Soc ; 139(17): 6050-6053, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28402108

RESUMO

A synthetic method to construct boron-handled cyclic molecules was developed based on a radical borylation/cyclization cascade of 1,6-enynes. The process was initiated by the chemo- and regio-controlled addition of an N-heterocyclic carbene-boryl radical to an alkene or alkyne, followed by ring closure to afford boron-substituted cyclic skeletons. Further molecular transformations of the cyclic products to synthetically useful building blocks were also demonstrated.

18.
Angew Chem Int Ed Engl ; 53(17): 4390-4, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24644147

RESUMO

A method for the synthesis of amide-containing molecules was developed using vinyl azides as an enamine-type nucleophile towards carbon electrophiles, such as imines, aldehydes, and carbocations that were generated from alcohols in the presence of BF3 ⋅OEt2 . After nucleophilic attack of the vinyl azide, a substituent of the resulting iminodiazonium ion intermediate migrates to form a nitrilium ion, which is hydrolyzed to afford the corresponding amide.


Assuntos
Amidas/síntese química , Azidas/química , Compostos Azo/química , Nitrilas/química , Compostos de Vinila/química , Estrutura Molecular
19.
J Pharm Pharmacol ; 76(7): 842-850, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38600790

RESUMO

BACKGROUND: Ischemic stroke (IS) is a detrimental neurological disease and IS lacks valuable methods to recover body function. Indobufen (IND) could alleviate IS. However, the possible mechanism remains undefined. METHODS: SH-SY5Y cells were cultured under the oxygen-glucose deprivation/reoxygenation (OGD/R) environment and then were treated with small interfering RNA (siRNA) of NRF2 and ATG5. The influence of various concentrations of IND (50 µM, 100 µM, 200 µM, and 400 µM) was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide. Levels of superoxide dismutase (SOD) and malonaldehyde (MDA) were examined by ELISA. Reactive oxygen species (ROS) production was determined by DCFH-DA staining. The protein levels of LC3II/LC3I, Beclin1, p62, NRF2, and ATG5 were detected by western blot. RESULTS: IND increased cell viability, while depressed the rate of apoptosis in SH-SY5Y cells of OGD/R environment. IND inhibited autophagy by suppressing the levels of LC3II/LC3I, Beclin1 protein, and increasing p62 protein expression in SH-SY5Y cells of OGD/R environment. IND limited the contents of ROS and MDA, while amplifying the activity of SOD in SH-SY5Y cells with OGD/R exposure. IND also promoted NRF2 expression in OGD/R environment. CONCLUSION: IND could inhibit autophagy, oxidative stress, and apoptosis in SH-SY5Y cells with OGD/R exposure, further alleviating IS injury by regulating transcription factor NRF2 and inhibiting ATG5 expression.


Assuntos
Apoptose , Proteína 5 Relacionada à Autofagia , Autofagia , Sobrevivência Celular , AVC Isquêmico , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Humanos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Autofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Superóxido Dismutase/metabolismo , Fármacos Neuroprotetores/farmacologia , Malondialdeído/metabolismo , RNA Interferente Pequeno/farmacologia
20.
Chem Commun (Camb) ; 60(32): 4275-4289, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38566567

RESUMO

Organoboron compounds demonstrate diverse applications in the fields of organic synthesis, materials science, and medicinal chemistry. Compared to the conventional hydroboration reaction, radical hydroboration serves as an alternative approach for the synthesis of organoborons via different mechanisms. In radical hydroboration, a boryl radical is initially generated from homolytic cleavage of a B-H or a B-B bond, which is then added to an unsaturated double bond to deliver a carbon radical. Subsequent hydrogen atom transfer or reduction of the carbon radical to form a carbanion followed by protonation gave the final product. Over the past few years, numerous efforts have been made for efficient synthesis of boryl radicals and the expansion of substrate scope of the radical hydroboration reaction. Here, we discuss the recent advancement of radical hydroboration and its associated mechanisms. Numerous radical hydroboration strategies employing N-heterocyclic carbene borane, bis(pinacolato)diboron and pinacolborane as the boron source were illustrated. Thermochemical, photochemical and electrochemical strategies for the generation of boryl radicals were also discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA