Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
PLoS Pathog ; 20(5): e1012232, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743760

RESUMO

Infectious bronchitis virus (IBV) is a coronavirus that infects chickens, which exhibits a broad tropism for epithelial cells, infecting the tracheal mucosal epithelium, intestinal mucosal epithelium, and renal tubular epithelial cells. Utilizing single-cell RNA sequencing (scRNA-seq), we systematically examined cells in renal, bursal, and tracheal tissues following IBV infection and identified tissue-specific molecular markers expressed in distinct cell types. We evaluated the expression of viral RNA in diverse cellular populations and subsequently ascertained that distal tubules and collecting ducts within the kidney, bursal mucosal epithelial cells, and follicle-associated epithelial cells exhibit susceptibility to IBV infection through immunofluorescence. Furthermore, our findings revealed an upregulation in the transcription of proinflammatory cytokines IL18 and IL1B in renal macrophages as well as increased expression of apoptosis-related gene STAT in distal tubules and collecting duct cells upon IBV infection leading to renal damage. Cell-to-cell communication unveiled potential interactions between diverse cell types, as well as upregulated signaling pathways and key sender-receiver cell populations after IBV infection. Integrating single-cell data from all tissues, we applied weighted gene co-expression network analysis (WGCNA) to identify gene modules that are specifically expressed in different cell populations. Based on the WGCNA results, we identified seven immune-related gene modules and determined the differential expression pattern of module genes, as well as the hub genes within these modules. Our comprehensive data provides valuable insights into the pathogenesis of IBV as well as avian antiviral immunology.


Assuntos
Comunicação Celular , Galinhas , Infecções por Coronavirus , Redes Reguladoras de Genes , Vírus da Bronquite Infecciosa , Análise de Célula Única , Animais , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/fisiologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Análise de Sequência de RNA , Células Epiteliais/virologia , Células Epiteliais/metabolismo
2.
J Virol ; 98(2): e0137723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38197629

RESUMO

Gut microbiota-derived metabolites are important for the replication and pathogenesis of many viruses. However, the roles of bacterial metabolites in swine enteric coronavirus (SECoV) infection remain poorly understood. Recent studies show that SECoVs infection in vivo significantly alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota. This prompted us to investigate whether and how SCFAs impact SECoV infection. Employing alphacoronavirus transmissible gastroenteritis virus (TGEV), a major cause of diarrhea in piglets, as a model, we found that SCFAs, particularly butyrate, enhanced TGEV infection both in porcine intestinal epithelial cells and swine testicular (ST) cells at the late stage of viral infection. This effect depended on the inhibited productions of virus-induced type I interferon (IFN) and downstream antiviral IFN-stimulated genes (ISGs) by butyrate. Mechanistically, butyrate suppressed the expression of retinoic acid-inducible gene I (RIG-I), a key viral RNA sensor, and downstream mitochondrial antiviral-signaling (MAVS) aggregation, thereby impairing type I IFN responses and increasing TGEV replication. Using pharmacological and genetic approaches, we showed that butyrate inhibited RIG-I-induced type I IFN signaling by suppressing class I histone deacetylase (HDAC). In summary, we identified a novel mechanism where butyrate enhances TGEV infection by suppressing RIG-I-mediated type I IFN responses. Our findings highlight that gut microbiota-derived metabolites like butyrate can be exploited by SECoV to dampen innate antiviral immunity and establish infection in the intestine.IMPORTANCESwine enteric coronaviruses (SECoVs) infection in vivo alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota, but whether microbiota-derived SCFAs impact coronavirus gastrointestinal infection is largely unknown. Here, we demonstrated that SCFAs, particularly butyrate, substantially increased alphacoronavirus TGEV infection at the late stage of infection, without affecting viral attachment or internalization. Furthermore, enhancement of TGEV by butyrate depended on impeding virus-induced type I interferon (IFN) responses. Mechanistically, butyrate suppressed the cytoplasmic viral RNA sensor RIG-I expression and downstream type I IFN signaling activation by inhibiting class I HDAC, thereby promoting TGEV infection. Our work reveals novel functions of gut microbiota-derived SCFAs in enhancing enteric coronavirus infection by impairing RIG-I-dependent type I IFN responses. This implies that bacterial metabolites could be therapeutic targets against SECoV infection by modulating antiviral immunity in the intestine.


Assuntos
Butiratos , Infecções por Coronavirus , Coronavirus , Microbioma Gastrointestinal , Interferon Tipo I , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Butiratos/metabolismo , Coronavirus/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Interferon Tipo I/imunologia , RNA Viral , Suínos , Vírus da Gastroenterite Transmissível/fisiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia
3.
J Virol ; : e0083024, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940559

RESUMO

Viruses have evolved a range of strategies to utilize or manipulate the host's cellular translational machinery for efficient infection, although the mechanisms by which infectious bronchitis virus (IBV) manipulates the host translation machinery remain unclear. In this study, we firstly demonstrate that IBV infection causes host shutoff, although viral protein synthesis is not affected. We then screened 23 viral proteins, and identified that more than one viral protein is responsible for IBV-induced host shutoff, the inhibitory effects of proteins Nsp15 were particularly pronounced. Ribosome profiling was used to draw the landscape of viral mRNA and cellular genes expression model, and the results showed that IBV mRNAs gradually dominated the cellular mRNA pool, the translation efficiency of the viral mRNAs was lower than the median efficiency (about 1) of cellular mRNAs. In the analysis of viral transcription and translation, higher densities of RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) reads were observed for structural proteins and 5' untranslated regions, which conformed to the typical transcriptional characteristics of nested viruses. Translational halt events and the number of host genes increased significantly after viral infection. The translationally paused genes were enriched in translation, unfolded-protein-related response, and activation of immune response pathways. Immune- and inflammation-related mRNAs were inefficiently translated in infected cells, and IBV infection delayed the production of IFN-ß and IFN-λ. Our results describe the translational landscape of IBV-infected cells and demonstrate new strategies by which IBV induces host gene shutoff to promote its replication. IMPORTANCE: Infectious bronchitis virus (IBV) is a γ-coronavirus that causes huge economic losses to the poultry industry. Understanding how the virus manipulates cellular biological processes to facilitate its replication is critical for controlling viral infections. Here, we used Ribo-seq to determine how IBV infection remodels the host's biological processes and identified multiple viral proteins involved in host gene shutoff. Immune- and inflammation-related mRNAs were inefficiently translated, the translation halt of unfolded proteins and immune activation-related genes increased significantly, benefitting IBV replication. These data provide new insights into how IBV modulates its host's antiviral responses.

4.
J Cell Mol Med ; 28(12): e18494, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890797

RESUMO

Stress triggers a comprehensive pathophysiological cascade in organisms. However, there is a substantial gap in the research regarding the effects of stress on liver function. This study aimed to investigate the impact of restraint stress on hepatocellular damage and elucidate the underlying molecular mechanisms. An effective mouse restraint stress model was successfully developed, and liver function analysis was performed using laser speckle imaging, metabolomics and serum testing. Alterations in hepatocyte morphology were assessed using haematoxylin and eosin staining and transmission electron microscopy. Oxidative stress in hepatocytes was assessed using lipid reactive oxygen species and malondialdehyde. The methylation status and expression of GSTP1 were analysed using DNA sequencing and, real-time PCR, and the expression levels of GPX4, TF and Nrf2 were evaluated using real-time quantitative PCR, western blotting, and immunohistochemical staining. A stress-induced model was established in vitro by using dexamethasone-treated AML-12 cells. To investigate the underlying mechanisms, GSTP1 overexpression, small interfering RNA, ferroptosis and Nrf2 inhibitors were used. GSTP1 methylation contributes to stress-induced hepatocellular damage and dysfunction. GSTP1 is involved in ferroptosis-mediated hepatocellular injury induced by restraint stress via the TF/Nrf2 pathway. These findings suggest that stress-induced hepatocellular injury is associated with ferroptosis, which is regulated by TF/Nrf2/GSTP1.

5.
J Virol ; 97(5): e0048923, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37097156

RESUMO

Infectious bronchitis virus (IBV) infections are initiated by the transmembrane spike (S) glycoprotein, which binds to host factors and fuses the viral and cell membranes. The N-terminal domain of the S1 subunit of IBV S protein binds to sialic acids, but the precise location of the sialic acid binding domain (SABD) and the role of the SABD in IBV-infected chickens remain unclear. Here, we identify the S1 N-terminal amino acid (aa) residues 19 to 227 (209 aa total) of IBV strains SD (GI-19) and GD (GI-7), and the corresponding region of M41 (GI-1), as the minimal SABD using truncated protein histochemistry and neuraminidase assays. Both α-2,3- and α-2,6-linked sialic acids on the surfaces of CEK cells can be used as attachment receptors by IBV, leading to increased infection efficiency. However, 9-O acetylation of the sialic acid glycerol side chain inhibits IBV S1 and SABD protein binding. We further constructed recombinant strains in which the S1 gene or the SABD in the GD and SD genomes were replaced with the corresponding region from M41 by reverse genetics. Infecting chickens with these viruses revealed that the virulence and nephrotropism of rSDM41-S1, rSDM41-206, rGDM41-S1, and rGDM41-206 strains were decreased to various degrees compared to their parental strains. A positive sera cross-neutralization test showed that the serotypes were changed for the recombinant viruses. Our results provide insight into IBV infection of host cells that may aid vaccine design. IMPORTANCE To date, only α-2,3-linked sialic acid has been identified as a potential host binding receptor for IBV. Here, we show the minimum region constituting the sialic acid binding domain (SABD) and the binding characteristics of the S1 subunit of spike (S) protein of IBV strains SD (GI-19), GD (GI-7), and M41 (GI-1) to various sialic acids. The 9-O acetylation modification partially inhibits IBV from binding to sialic acid, while the virus can also bind to sialic acid molecules linked to host cells through an α-2,6 linkage, serving as another receptor determinant. Substitution of the putative SABD from strain M41 into strains SD and GD resulted in reduced virulence, nephrotropism, and a serotype switch. These findings suggest that sialic acid binding has diversified during the evolution of γ-coronaviruses, impacting the biological properties of IBV strains. Our results offer insight into the mechanisms by which IBV invades host cells.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Glicoproteína da Espícula de Coronavírus , Animais , Galinhas , Vírus da Bronquite Infecciosa/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oligopeptídeos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
J Immunol ; 208(6): 1396-1405, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217582

RESUMO

To develop a safe and effective nanoparticle (NP) multiepitope DNA vaccine for controlling infectious bronchitis virus (IBV) infection, we inserted the multiepitope gene expression box SBNT into a eukaryotic expression vector pcDNA3.1(+) to construct a recombinant plasmid pcDNA/SBNT. The NP multiepitope DNA vaccine pcDNA/SBNT-NPs were prepared using chitosan to encapsulate the recombinant plasmid pcDNA/SBNT, with a high encapsulation efficiency of 94.90 ± 1.35%. These spherical pcDNA/SBNT-NPs were 140.9 ± 73.2 nm in diameter, with a mean ζ potential of +16.8 ± 4.3 mV. Our results showed that the chitosan NPs not only protected the plasmid DNA from DNase degradation but also mediated gene transfection in a slow-release manner. Immunization with pcDNA/SBNT-NPs induced a significant IBV-specific immune response and partially protected chickens against homologous IBV challenge. Therefore, the chitosan NPs could be a useful gene delivery system, and NP multiepitope DNA vaccines may be a potential alternative for use in the development of a novel, safe, and effective IBV vaccine.


Assuntos
Quitosana , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Nanopartículas , Vacinas de DNA , Vacinas Virais , Animais , Galinhas , Infecções por Coronavirus/prevenção & controle , Vírus da Bronquite Infecciosa/genética , Vacinas de DNA/genética
7.
Lipids Health Dis ; 23(1): 68, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431645

RESUMO

BACKGROUND: Stress is implicated in various pathological conditions leading to liver injury. Existing evidence suggests that excessive stress can induce mitochondrial damage in hepatocytes, yet the underlying mechanism remains unclear. Ceramide synthase 6 (CerS6)-derived C16:0 ceramide is recognised as a lipotoxic substance capable of causing mitochondrial damage. However, the role of CerS6 in stress has received insufficient attention. This study aimed to explore the involvement of CerS6 in stress-induced hepatic damage and its associated mechanisms. METHODS: The rat restraint stress model and a corticosterone (CORT)-induced hepatocyte stress model were employed for in vivo and in vitro experimental analyses, respectively. Changes in mitochondrial damage and ceramide metabolism in hepatocytes induced by stress were evaluated. The impact of CORT on mitochondrial damage and ceramide metabolism in hepatocytes was assessed following CerS6 knockdown. Mitochondria were isolated using a commercial kit, and ceramides in liver tissue and hepatocytes were detected by LC-MS/MS. RESULTS: In comparison to the control group, rats subjected to one week of restraint exhibited elevated serum CORT levels. The liver displayed significant signs of mitochondrial damage, accompanied by increased CerS6 and mitochondrial C16:0 ceramide, along with activation of the AMPK/p38 MAPK pathway. In vitro studies demonstrated that CORT treatment of hepatocytes resulted in mitochondrial damage, concomitant with elevated CerS6 and mitochondrial C16:0 ceramide. Furthermore, CORT induced sequential phosphorylation of AMPK and p38 MAPK proteins, and inhibition of the p38 MAPK pathway using SB203580 mitigated the CORT-induced elevation in CerS6 protein. Knocking down CerS6 in hepatocytes inhibited both the increase in C16:0 ceramide and the release of mitochondrial cytochrome c induced by CORT. CONCLUSIONS: CerS6-associated C16:0 ceramide plays a mediating role in stress-induced mitochondrial damage in hepatocytes. The molecular mechanism is linked to CORT-induced activation of the AMPK/p38 MAPK pathway, leading to upregulated CerS6.


Assuntos
Proteínas Quinases Ativadas por AMP , Espectrometria de Massas em Tandem , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Cromatografia Líquida , Ceramidas/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo
8.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474189

RESUMO

Coronary artery spasm (CAS) plays an important role in the pathogeneses of various ischemic heart diseases and has gradually become a common cause of life-threatening arrhythmia. The specific molecular mechanism of CAS has not been fully elucidated, nor are there any specific diagnostic markers for the condition. Therefore, this study aimed to examine the specific molecular mechanism underlying CAS, and screen for potential diagnostic markers. To this end, we successfully constructed a rat CAS model and achieved in vitro culture of a human coronary-artery smooth-muscle cell (hCASMC) contraction model. Possible molecular mechanisms by which protein kinase C (PKC) regulated CAS through the C kinase-potentiated protein phosphatase 1 inhibitor of 17 kDa (CPI-17)/myosin II regulatory light chain (MLC2) pathway were studied in vivo and in vitro to screen for potential molecular markers of CAS. We performed hematoxylin and eosin staining, myocardial zymogram, and transmission electron microscopy to determine myocardial and coronary artery injury in CAS rats. Then, using immunohistochemical staining, immunofluorescence staining, and Western blotting, we further demonstrated a potential molecular mechanism by which PKC regulated CAS via the CPI-17/MLC2 pathway. The results showed that membrane translocation of PKCα occurred in the coronary arteries of CAS rats. CPI-17/MLC2 signaling was observably activated in coronary arteries undergoing CAS. In addition, in vitro treatment of hCASMCs with angiotensin II (Ang II) increased PKCα membrane translocation while consistently activating CPI-17/MLC2 signaling. Conversely, GF-109203X and calphostin C, specific inhibitors of PKC, inactivated CPI-17/MLC2 signaling. We also collected the coronary artery tissues from deceased subjects suspected to have died of CAS and measured their levels of phosphorylated CPI-17 (p-CPI-17) and MLC2 (p-MLC2). Immunohistochemical staining was positive for p-CPI-17 and p-MLC2 in the tissues of these subjects. These findings suggest that PKCα induced CAS through the CPI-17/MLC2 pathway; therefore, p-CPI-17 and p-MLC2 could be used as potential markers for CAS. Our data provide novel evidence that therapeutic strategies against PKC or CPI-17/MLC2 signaling might be promising in the treatment of CAS.


Assuntos
Vasoespasmo Coronário , Animais , Humanos , Ratos , Biomarcadores/metabolismo , Morte Súbita Cardíaca , Fosfoproteínas/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa/metabolismo
9.
J Virol ; 96(12): e0068622, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638780

RESUMO

Infectious bronchitis virus (IBV), a γ-coronavirus, causes the economically important poultry disease infectious bronchitis. Cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation. Previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. Here, we aimed to delineate the molecular mechanisms regulating the SG response to pathogenic IBV strain infection. We found that most chicken embryo kidney (CEK) cells formed no SGs during IBV infection and IBV replication inhibited arsenite-induced SG formation. This inhibition was not caused by changes in the integrity or abundance of SG proteins during infection. IBV nonstructural protein 15 (Nsp15) endoribonuclease activity suppressed SG formation. Regardless of whether Nsp15 was expressed alone, with recombinant viral infection with Newcastle disease virus as a vector, or with EndoU-deficient IBV, the Nsp15 endoribonuclease activity was the main factor inhibiting SG formation. Importantly, uridine-specific endoribonuclease (EndoU)-deficient IBV infection induced colocalization of IBV N protein/dsRNA and SG-associated protein TIA1 in infected cells. Additionally, overexpressing TIA1 in CEK cells suppressed IBV replication and may be a potential antiviral factor for impairing viral replication. These data provide a novel foundation for future investigations of the mechanisms by which coronavirus endoribonuclease activity affects viral replication. IMPORTANCE Endoribonuclease is conserved in coronaviruses and affects viral replication and pathogenicity. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal, and reproductive systems, causing millions of dollars in lost revenue to the poultry industry worldwide annually. Mutating the viral endoribonuclease poly(U) resulted in SG formation, and TIA1 protein colocalized with the viral N protein and dsRNA, thus damaging IBV replication. These results suggest a new antiviral target design strategy for coronaviruses.


Assuntos
Infecções por Coronavirus , Endorribonucleases , Vírus da Bronquite Infecciosa , Grânulos de Estresse , Replicação Viral , Animais , Antivirais/farmacologia , Embrião de Galinha , Galinhas , Infecções por Coronavirus/veterinária , Endorribonucleases/genética , Vírus da Bronquite Infecciosa/enzimologia , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/virologia , RNA de Cadeia Dupla
10.
PLoS Pathog ; 17(3): e1009436, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33740012

RESUMO

Opportunistic pathogens frequently cause volatile infections in hosts with compromised immune systems or a disrupted normal microbiota. The commensalism of diverse microorganisms contributes to colonization resistance, which prevents the expansion of opportunistic pathogens. Following microbiota disruption, pathogens promptly adapt to altered niches and obtain growth advantages. Nevertheless, whether and how resident bacteria modulate the growth dynamics of invasive pathogens and the eventual outcome of such infections are still unclear. Here, we utilized birds as a model animal and observed a resident bacterium exacerbating the invasion of Avibacterium paragallinarum (previously Haemophilus paragallinarum) in the respiratory tract. We first found that negligibly abundant Staphylococcus chromogenes, rather than Staphylococcus aureus, played a dominant role in Av. paragallinarum-associated infectious coryza in poultry based on epidemic investigations and in vitro analyses. Furthermore, we determined that S. chromogenes not only directly provides the necessary nutrition factor nicotinamide adenine dinucleotide (NAD+) but also accelerates its biosynthesis and release from host cells to promote the survival and growth of Av. paragallinarum. Last, we successfully intervened in Av. paragallinarum-associated infections in animal models using antibiotics that specifically target S. chromogenes. Our findings show that opportunistic pathogens can hijack commensal bacteria to initiate infection and expansion and suggest a new paradigm to ameliorate opportunistic infections by modulating the dynamics of resident bacteria.


Assuntos
Infecções Oportunistas/microbiologia , Doenças das Aves Domésticas/microbiologia , Sistema Respiratório/microbiologia , Infecções Respiratórias/veterinária , Animais , Anti-Infecciosos/farmacologia , Galinhas , Infecções por Haemophilus/microbiologia , Haemophilus paragallinarum/efeitos dos fármacos , Haemophilus paragallinarum/patogenicidade , Microbiota , Infecções Respiratórias/microbiologia , Staphylococcus/efeitos dos fármacos
11.
Virol J ; 20(1): 25, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759854

RESUMO

BACKGROUND: Newcastle disease virus (NDV) is a highly infectious viral disease, which can affect chickens and many other kinds of birds. The main virulence factor of NDV, the fusion (F) protein, is located on the viral envelope and plays a major role in the virus' ability to penetrate cells and cause host cell fusion during infection. Multiple highly conserved tyrosine and di-leucine (LL) motifs in the cytoplasmic tail (CT) of the virus may contribute to F protein functionality in the viral life cycle. METHODS: To examine the contribution of the LL motif in the biosynthesis, transport, and function of the F protein, we constructed and rescued a NDV mutant strain, rSG10*-F/L537A, with an L537A mutation using a reverse genetic system. Subsequently, we compared the differences in the syncytium formation ability, pathogenicity, and replication levels of wild-type rSG10* and the mutated strain. RESULTS: Compared with rSG10*, rSG10*-F/L537A had attenuated syncytial formation and pathogenicity, caused by a viral budding defect. Further studies showed that the LL-motif mutation did not affect the replication, transcription, or translation of the virus genome but affected the expression of the F protein at the cell surface. CONCLUSIONS: We concluded that the LL motif in the NDV F CT affected the regulation of F protein expression at the cell surface, thus modulating the viral fusion ability and pathogenic phenotype.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/genética , Galinhas , Leucina , Mutação , Mutagênese , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
12.
J Virol ; 95(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361429

RESUMO

Coronavirus (CoV) nsp15 is an endoribonuclease conserved throughout the CoV family. The enzymatic activity and crystal structure of infectious bronchitis virus (IBV) nsp15 are undefined, and the protein's role in replication remains unclear. We verified the uridylate-specific endoribonuclease (EndoU) activity of IBV and found that the EndoU active sites were located in the C-terminus of nsp15 and included His223, His238, Lys278 and Tyr334. We further constructed an infectious clone of the IBV-rSD strain (rSD-wild-type [WT]) and EndoU-deficient IBVs by changing the codon for the EndoU catalytic residues to alanine. Both the rSD-WT and EndoU-deficient viruses propagated efficiently in embryonated chicken eggs. Conversely, EndoU-deficient viral propagation was severely impaired in chicken embryonic kidney cells, which was reflected in the lower viral mRNA accumulation and protein synthesis. After infecting chickens with the parental rSD-WT strain and EndoU-deficient viruses, the EndoU-deficient-virus-infected chickens presented reduced mortality, tissue injury and viral shedding.IMPORTANCE Coronaviruses can emerge from animal reservoirs into naive host species to cause pandemic respiratory and gastrointestinal diseases with significant mortality in humans and domestic animals. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal and reproductive systems, causing millions of dollars in lost revenue worldwide annually. Mutating the viral endoribonuclease resulted in an attenuated virus and prevented protein kinase R activation. Therefore, EndoU activity is a virulence factor in IBV infections, thus providing an approach for generating live-attenuated vaccine candidates for emerging coronaviruses.

13.
J Virol ; 95(7)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33441338

RESUMO

We previously demonstrated that W proteins from different Newcastle disease virus (NDV) strains localize in either the cytoplasm (e.g., NDV strain SG10) or the nucleus (e.g., NDV strain La Sota). To clarify the mechanism behind these cell localization differences, we overexpressed W protein derived from four different NDV strains or W protein associated with different cellular regions in Vero cells. This revealed that the key region for determining W protein localization is 180-227aa. Further experiments found that there is a nuclear export signal (NES) motif in W protein 211-224aa. W protein could be transported into the nucleus via interaction with KPNA1, KPNA2, and KPNA6 in a nuclear localization signal-dependent manner, and W protein containing an NES was transported back to the cytoplasm in a CRM1-independent manner. Interestingly, we observed that the cytoplasm-localized W protein colocalizes with mitochondria. We rescued the NES-deletion W protein NDV strain rSG10-ΔWC/WΔNES using an NDV reverse genetics system and found that the replication ability, virulence, and pathogenicity of an NDV strain were all higher when the W protein cellular localization was in the nucleus rather than the mitochondria. Further experiments revealed that W protein nuclear localization reduced the expression of IFN-ß otherwise stimulated by NDV. Our research reveals the mechanism by which NDV W protein becomes localized to different parts of the cell and demonstrates the outcomes of nuclear or cytoplasmic localization both in vitro and in vivo, laying a foundation for subsequent functional studies of the W protein in NDV and other paramyxoviruses.IMPORTANCE In Newcastle disease virus (NDV), the W protein, like the V protein, is a nonstructural protein encoded by the P gene via RNA editing. Compared with V protein, W protein has a common N-terminal domain but a unique C-terminal domain. V protein is known as a key virulence factor and an important interferon antagonist across the family Paramyxoviridae In contrast, very little is known about the function of NDV W protein, and this limited information is based on studies of the Nipah virus W protein. Here, we investigated the localization mechanism of NDV W protein and its subcellular distribution in mitochondria. We found that W protein localization differences impact IFN-ß production, consequently affecting NDV virulence, replication, and pathogenicity. This work provides new insights on the differential localization mechanism of NDV W proteins, along with fundamental knowledge for understanding the functions of W proteins in NDV and other paramyxoviruses.

14.
J Virol ; 95(17): e0066721, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34105997

RESUMO

Cellular immune responses play a key role in the control of viral infection. The nucleocapsid (N) protein of infectious bronchitis virus (IBV) is a major immunogenic protein that can induce protective immunity. To screen for potential T-cell epitopes on IBV N protein, 40 overlapping peptides covering the entirety of the N protein were designed and synthesized. Four T-cell epitope peptides were identified by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot), intracellular cytokine staining, and carboxyfluorescein succinimidyl ester (CFSE) lymphocyte proliferation assays; among them, three peptides (N211-230, N271-290, and N381-400) were cytotoxic T lymphocyte (CTL) epitopes, and one peptide (N261-280) was a dual-specific T-cell epitope, which can be recognized by both CD8+ and CD4+ T cells. Multi-epitope gene transcription cassettes comprising four neutralizing epitope domains and four T-cell epitope peptides were synthesized and inserted into the genome of Newcastle disease virus strain La Sota between the P and M genes. Recombinant IBV multi-epitope vaccine candidate rLa Sota/SBNT was generated via reverse genetics, and its immune protection efficacy was evaluated in specific-pathogen-free chickens. Our results show that rLa Sota/SBNT induced IBV-specific neutralizing antibody and T-cell responses and provided significant protection against homologous and heterologous IBV challenge. Thus, the T-cell epitope peptides identified in this study could be good candidates for IBV vaccine development, and recombinant Newcastle disease virus-expressing IBV multi-epitope genes represent a safe and effective vaccine candidate for controlling infectious bronchitis. IMPORTANCE T-cell-mediated immune responses are critical for the elimination of IBV-infected cells. To screen conserved T-cell epitopes in the IBV N protein, 40 overlapping peptides covering the entirety of the N protein were designed and synthesized. By combining IFN-γ ELISpot, intracellular cytokine staining, and CFSE lymphocyte proliferation assays, we identified three CTL epitopes and one dual-specific T-cell epitope. The value of T-cell epitope peptides identified in the N protein was further verified by the design of an IBV multi-epitope vaccine. Results show that IBV multi-epitope vaccine candidate rLa Sota/SBNT provided cross protection against challenges with a QX-like or a TW-like IBV strain. So, T-cell-mediated immune responses play an important role in the control of viral infection, and conserved T-cell epitopes serve as promising candidates for use in multi-epitope vaccine construction. Our results provide a new perspective for the development of a safer and more effective IBV vaccine.


Assuntos
Infecções por Coronavirus/prevenção & controle , Epitopos de Linfócito T/imunologia , Imunidade Celular/imunologia , Vírus da Bronquite Infecciosa/imunologia , Proteínas do Nucleocapsídeo/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Galinhas , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Imunidade Celular/efeitos dos fármacos , Doenças das Aves Domésticas/imunologia , Organismos Livres de Patógenos Específicos , Linfócitos T Citotóxicos/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia
15.
J Virol ; 95(11)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33727330

RESUMO

The furin cleavage site plays an important role in virus pathogenicity. The spike protein of SARS-CoV-2 harbors a furin cleavage site insertion in contrast to SARS-CoV, which may be related to its stronger communicability. An avian coronavirus with an extra furin cleavage site upstream of the fusion peptide (S2' site) infected monocyte cells and neuron cells leading to viremia or encephalitis, respectively. Immunohistochemistry and real-time quantitative polymerase chain reaction were used to follow disease progression and demonstrated differences between the parent avian coronavirus and mutated avian coronavirus with a furin-S2' site. Magnetic resonance imaging and biological dye to evaluate the blood-brain barrier permeability showed that avian coronavirus with a furin-S2' site had increased permeability compared with parent avian coronavirus. Immunohistochemistry of brains after intracerebral injection of avian coronavirus and immunofluorescence staining of primary neuron cells demonstrated the furin-S2' site expanded the cell tropism of the mutant avian coronavirus to neuron cells. TNF-α, which has a key role in blood-brain barrier permeability, was highly induced by avian coronavirus with a furin-S2' site compared with the parent avian coronavirus. We demonstrated the process involved in mutant avian coronavirus-induced disease and that the addition of a furin-S2' site changed the virus cell tropism.IMPORTANCECoronaviruses have broken out three times in two decades. Spike (S) protein plays a key role in the process of infection. To clarify importance of furin cleavage site in spike protein for coronavirus, we investigated the pathogenesis of neurotropic avian coronavirus whose spike protein contains an extra furin cleavage site (furin-S2' site). By combining real-time quantitative polymerase chain reaction and immunohistochemistry we demonstrated that infectious bronchitis virus (IBV) infects brain instead of trachea when its S protein contains furin-S2' site. Moreover, the virus was shown to increase the permeability of blood-brain barrier, infect neuron cells and induce high expression of TNF-α. Based on these results we further show that furin cleavage site in S protein plays an important role in coronavirus pathogenicity and cell tropism. Our study extends previous publications on function of S protein of coronavirus, increasing the understanding of researchers to coronavirus.

16.
Int J Legal Med ; 136(5): 1303-1307, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35394178

RESUMO

Formaldehyde is a colourless irritating gas at room temperature, which, therefore, is usually stored in liquid form. This compound is often used as an antiseptic, disinfectant and fumigant in biology and medicine. Formaldehyde, as a potential carcinogen confirmed by the World Health Organization (WHO), is seriously harmful to human systems, such as the respiratory system, immune system and reproductive system. This article reports a case of a 50-year-old woman who died after accidentally drinking 25% formaldehyde solution in a transparent plastic bottle. Anatomical examination revealed fixed tissue morphology of the stomach and adjacent organs. The toxicity test results showed that the concentrations of formaldehyde in the blood and gastric tissue were 36.56 mg/kg and 274.48 mg/kg, respectively, which was consistent with death from formaldehyde poisoning. Due to the particular smell of formaldehyde, poisoning by accidentally drinking formaldehyde solution is rare. Of late, the mechanism of death from formaldehyde poisoning is that it rapidly causes coagulation of tissue cell protein, which may lose its normal function. Based on the pathological characteristics of the case, we put forward a new viewpoint on the mechanism of death from formaldehyde poisoning in which formaldehyde causes rapid fixation of blood in the tissue, thus leading to acute circulatory disturbance.


Assuntos
Formaldeído , Intoxicação , Acidentes , Feminino , Formaldeído/efeitos adversos , Humanos , Pessoa de Meia-Idade , Intoxicação/patologia , Hipersensibilidade Respiratória , Estômago/patologia
17.
Arch Virol ; 167(7): 1521-1527, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35606465

RESUMO

Avian leukosis virus subgroup J (ALV-J) is the most prevalent subgroup in chickens and exhibits increased pathogenicity and stronger horizontal and vertical transmission ability among different breeds. Although vertical transmission of ALV-J from infected hens through artificial insemination has been inferred from the detection of the p27 antigen in swabs and serum, there has been no further research on the transmission pattern of ALVs in roosters. In the present study, the positive rate of ALV increased significantly in an indigenous flock after detecting the p27 antigen via enzyme-linked immunosorbent assay (ELISA) and virus isolation in DF-1 cells. Viral sequence comparisons and an indirect fluorescent antibody assay showed that these isolates belonged to the ALV-J subgroup but formed a new branch in a phylogenetic tree when compared to domestic and foreign referential strains. The gp85 gene of the ALV-J isolated from hens and albumen was 94.1-99.7% identical to that in roosters, revealing that these isolates were quite likely transmitted to the hens and their offspring through the semen of ALV-infected roosters by artificial insemination from the Hy-line brown roosters. In addition, we defined four ALV-J infection states in plasma and semen of roosters (P+S+, P-S+, P+S-, and P-S-), which suggests that, in order to eradicate ALV in roosters, it is necessary to perform virus isolation using both semen and plasma. Additionally, ALV detection in semen by ELISA produced false-positive and false-negative results when compared to virus isolation in DF-1 cells. Collectively, our results suggested that an incomplete process of eradication of ALV from ALV-positive roosters led to the sporadic presence of ALV-J in laying hens.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Animais , Galinhas , Feminino , Masculino , Filogenia , Melhoramento Vegetal
18.
Avian Pathol ; 51(4): 339-348, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35404721

RESUMO

Infectious bronchitis is an acute and highly contagious disease caused by avian infectious bronchitis virus (IBV). As well as the typical clinical respiratory signs, such as dyspnoea and tracheal rales, QX genotype strains can also cause damage to the urinary system and reproductive system. Our previous studies found that chickens infected with QX-type IBV also displayed damage to the bursa of Fabricius. To investigate the effects of different genotypes of IBV on the bursa of Fabricius, we challenged one-week-old SPF chickens with Mass, QX and TW genotype IBV strains and compared the clinical signs, gross lesions, histopathological damage, viral loads, and expression levels of inflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-α,ß, γ and TNF-α). The results showed that all three strains caused tissue damage, while significant temporal variations in the viral loads of the different infected groups were detected. IBV infection seriously interfered with the natural immune response mediated by inflammatory cytokines (IFN-α, IFN-ß, IL-6 and IFN-γ) in chickens. Our results suggested that IBV has potential immunological implications for chickens that may lead to poor production efficiency. RESEARCH HIGHLIGHTSAvian coronavirus IBV is an important pathogen of chickens.IBV has potential immunological implications in chickens.The bursal viral load of different IBV strains varies significantly.


Assuntos
Bolsa de Fabricius , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Bolsa de Fabricius/patologia , Bolsa de Fabricius/virologia , Galinhas , Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/patogenicidade , Interleucina-6 , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia
19.
Fa Yi Xue Za Zhi ; 38(3): 374-384, 2022 Jun 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-36221833

RESUMO

Hereditary cardiac disease accounts for a large proportion of sudden cardiac death (SCD) in young adults. Hereditary cardiac disease can be divided into hereditary structural heart disease and channelopathies. Hereditary structural heart disease mainly includes hereditary cardiomyopathy, which results in arhythmia, heart failure and SCD. The autopsy and histopathological examinations of SCD caused by channelopathies lack characteristic morphological manifestations. Therefore, how to determine the cause of death in the process of examination has become one of the urgent problems to be solved in forensic identification. Based on the review of recent domestic and foreign research results on channelopathies and hereditary cardiomyopathy, this paper systematically reviews the pathogenesis and molecular genetics of channelopathies and hereditary cardiomyopathy, and discusses the application of postmortem genetic testing in forensic identification, to provide reference for forensic pathology research and identification of SCD.


Assuntos
Canalopatias , Cardiopatias , Autopsia/métodos , Canalopatias/complicações , Canalopatias/genética , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/patologia , Testes Genéticos , Cardiopatias/complicações , Cardiopatias/diagnóstico , Cardiopatias/genética , Humanos , Adulto Jovem
20.
Vet Res ; 52(1): 61, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926543

RESUMO

Infectious bursal disease virus (IBDV) and fowl adenovirus serotype 4 (FAdV-4) cause infectious bursal disease (IBD) and hydropericardium-hepatitis syndrome, respectively. Recently, studies have reported co-infections of poultry with IBDV and FAdV-4, which is an important problem in the poultry industry. Here, the variant IBDV strain ZD-2018-1 and FAdV-4 isolate HB1501 were used to assess the pathogenicity of co-infection in 1-day-old specific pathogen-free (SPF) chickens. Compared with chickens infected with only FAdV-4, those coinfected with IBDV and FAdV-4 showed enhanced clinical symptoms, higher mortality, more severe tissue lesions, and higher biochemical index levels. Furthermore, the expression of interleukin (IL)-6, IL-1ß, and interferon-γ mRNAs in the IBDV-FAdV-4 coinfected chickens was delayed, and the antibody response levels were significantly lower in those birds compared with the FAdV-4-infected chickens. These results indicate that co-infection with variant IBDV ZD-2018-1 and FAdV-4 HB1501 could significantly promote the pathogenicity of FAdV-4 and reduce the immune response in chickens. This study provides the foundation for further investigation of the interaction mechanism in IBDV and FAdV-4 co-infection.


Assuntos
Infecções por Birnaviridae/veterinária , Galinhas , Coinfecção/veterinária , Imunidade Inata , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/mortalidade , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/mortalidade , Infecções por Adenoviridae/veterinária , Animais , Aviadenovirus/fisiologia , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/mortalidade , Coinfecção/imunologia , Coinfecção/mortalidade , Vírus da Doença Infecciosa da Bursa/fisiologia , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA