Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Mater ; 23(3): 323-330, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38191631

RESUMO

Moiré superlattices formed by twisting trilayers of graphene are a useful model for studying correlated electron behaviour and offer several advantages over their formative bilayer analogues, including a more diverse collection of correlated phases and more robust superconductivity. Spontaneous structural relaxation alters the behaviour of moiré superlattices considerably and has been suggested to play an important role in the relative stability of superconductivity in trilayers. Here we use an interferometric four-dimensional scanning transmission electron microscopy approach to directly probe the local graphene layer alignment over a wide range of trilayer graphene structures. Our results inform a thorough understanding of how reconstruction modulates the local lattice symmetries crucial for establishing correlated phases in twisted graphene trilayers, evincing a relaxed structure that is markedly different from that proposed previously.

2.
Semin Dial ; 37(3): 234-241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38178376

RESUMO

OBJECTIVE: This study used random forest model to explore the feasibility of radial artery calcification in prediction of coronary artery calcification in hemodialysis patients. MATERIAL AND METHODS: We enrolled hemodialysis patients and performed ultrasound examinations on their radial arteries to evaluate the calcification status using a calcification index. All involved patients received coronary artery computed tomography scans to generate coronary artery calcification scores (CACS). Clinical variables were collected from all patients. We constructed both a random forest model and a logistic regression model to predict CACS. Logistic regression model was used to identify the risk factors of radial artery calcification. RESULTS: One hundred eighteen patients were included in our analysis. In random forest model, the radial artery calcification index, age, serum C-reactive protein, body mass index (BMI), diabetes, and hypertension history were related to CACS based on the average decrease of the Gini coefficient. The random forest model achieved a sensitivity of 76.9%, specificity of 75.0%, and area under receiver operating characteristic of 0.869, while the logistic regression model achieved a sensitivity of 75.2%, specificity of 68.7%, and area under receiver operating characteristic of 0.742 in prediction of CACS. Sex, BMI index, smoking history, hypertension history, diabetes history, and serum total calcium were all the risk factors related to radial artery calcification. CONCLUSIONS: A random forest model based on radial artery calcification could be used to predict CACS in hemodialysis patients, providing a potential method for rapid screening and prediction of coronary artery calcification.


Assuntos
Doença da Artéria Coronariana , Aprendizado Profundo , Artéria Radial , Diálise Renal , Calcificação Vascular , Humanos , Masculino , Feminino , Diálise Renal/efeitos adversos , Artéria Radial/diagnóstico por imagem , Pessoa de Meia-Idade , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/etiologia , Calcificação Vascular/diagnóstico , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico , Idoso , Fatores de Risco , Falência Renal Crônica/terapia , Falência Renal Crônica/complicações , Valor Preditivo dos Testes
3.
Angew Chem Int Ed Engl ; 63(8): e202316029, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38168107

RESUMO

RuO2 is one of the benchmark electrocatalysts used as the anode material in proton exchange membrane water electrolyser. However, its long-term stability is compromised due to the participation of lattice oxygen and metal dissolution during oxygen evolution reaction (OER). In this work, weakened covalency of Ru-O bond was tailored by introducing tensile strain to RuO6 octahedrons in a binary Ru-Sn oxide matrix, prohibiting the participation of lattice oxygen and the dissolution of Ru, thereby significantly improving the long-term stability. Moreover, the tensile strain also optimized the adsorption energy of intermediates and boosted the OER activity. Remarkably, the RuSnOx electrocatalyst exhibited excellent OER activity in 0.1 M HClO4 and required merely 184 mV overpotential at a current density of 10 mA cm-2 . Moreover, it delivered a current density of 10 mA cm-2 for at least 150 h with negligible potential increase. This work exemplifies an effective strategy for engineering Ru-based catalysts with extraordinary performance toward water splitting.

4.
BMC Endocr Disord ; 23(1): 250, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974132

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility in women of childbearing age. Randomized controlled trials (RCTs) have reported that exenatide and metformin are effective in the treatment of PCOS. In this meta-analysis, we aimed to compare the effectiveness and safety of exenatide alone or in combination with metformin versus metformin in patients suffering from PCOS. METHODS: RCTs of exenatide therapy were identified through a search of electronic databases in November 2022 and updated in October 2023. Eligible studies were identified independently by the reviewers. Outcomes were analysed with Revman 5.4. RESULTS: Nine RCTs among 214 studies on 1059 women with PCOS were included in the analysis, and among the nine RCTs, eight studies compared exenatide with metformin. Our meta-analysis demonstrated that exenatide was more effective than metformin in terms of pregnancy rate (RR 1.85 [95% CI 1.19,2.86] P = 0.006), sex hormone-binding globulin (SHBG) (MD 5 [95% CI 3.82,6.18] P < 0.001), and follicle-stimulating hormone (FSH) (MD 0.82 [95% 0.41,1.24] P < 0.001). The reductions in total testosterone (TT) (SMD -0.43 [95% CI -0.84, -0.03] P = 0.04) was more significant after treatment with exenatide than after treatment with metformin. In terms of safety, exenatide had a lower diarrhea rate (RR 0.11 [95% CI 0.01, 0.84]) than metformin. In the other three studies, exenatide plus metformin was compared with metformin. Exenatide combined with metformin was more effective in improving SHBG (MD 10.38[95%CI 6.7,14.06] P < 0.001), Matsuda index (MD 0.21[95%CI 0.05,0.37]) and reducing free androgen index (FAI) (MD -3.34 [-4.84, -1.83] P < 0.001), Weight (MD -2.32 [95%CI -3.89, -0.66]) and WC (MD-5.61[95%CI -8.4, -2.82] P < 0.001). The incidence of side effects between exenatide plus metformin and metformin was not statistically significant. CONCLUSIONS: Exenatide alone or in combination with metformin is more effective than metformin for women with PCOS. Considering the evidence on effectiveness and safety, exenatide alone or in combination with metformin may be a better treatment approach than metformin for women with PCOS. TRIAL REGISTRATION: INPLASY https://inplasy.com/inplasy-protocols/ ID: 10.37766/inplasy2022.11.0055.


Assuntos
Metformina , Síndrome do Ovário Policístico , Gravidez , Feminino , Humanos , Metformina/uso terapêutico , Síndrome do Ovário Policístico/tratamento farmacológico , Exenatida/uso terapêutico , Taxa de Gravidez , Hipoglicemiantes/uso terapêutico
5.
Biochem J ; 478(10): 1907-1919, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33955460

RESUMO

Antimicrobial peptides (AMPs) are conventional antibiotic alternatives due to their broad-spectrum antimicrobial activities and special mechanisms of action against pathogens. The antifungal peptide CGA-N12 was originally derived from human chromogranin A (CGA) and consists of the 65th to 76th amino acids of the CGA N-terminal region. In the present study, we found that CGA-N12 had fungicidal activity and exhibited time-dependent inhibition activity against Candida tropicalis. CGA-N12 entered the cells to exert its antagonist activity. The internalization of CGA-N12 was energy-dependent and accompanied by actin cytoskeleton-, clathrin-, sulfate proteoglycan-, endosome-, and lipid-depleting agent-mediated endocytosis. Moreover, the CGA-N12 internalization pathway was related to the peptide concentration. The effects of CGA-N12 on the cell membrane were investigated. CGA-N12 at a low concentration less than 4 × MIC100 did not destroy the cell membrane. While with increasing concentration, the damage to the cell membrane caused by CGA-N12 became more serious. At concentrations greater than 4 × MIC100, CGA-N12 destroyed the cell membrane integrity. Therefore, the membrane activity of CGA-N12 is concentration dependant.


Assuntos
Antifúngicos/farmacologia , Candida tropicalis/efeitos dos fármacos , Membrana Celular/metabolismo , Cromogranina A/metabolismo , Endocitose , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Transporte Biológico , Cálcio/metabolismo , Candida tropicalis/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Humanos
6.
Annu Rev Neurosci ; 36: 361-81, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23724999

RESUMO

Sensory hair cells are exquisitely sensitive vertebrate mechanoreceptors that mediate the senses of hearing and balance. Understanding the factors that regulate the development of these cells is important, not only to increase our understanding of ear development and its functional physiology but also to shed light on how these cells may be replaced therapeutically. In this review, we describe the signals and molecular mechanisms that initiate hair cell development in vertebrates, with particular emphasis on the transcription factor Atoh1, which is both necessary and sufficient for hair cell development. We then discuss recent findings on how microRNAs may modulate the formation and maturation of hair cells. Last, we review recent work on how hair cells are regenerated in many vertebrate groups and the factors that conspire to prevent this regeneration in mammals.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Ciliadas Auditivas/fisiologia , Mecanorreceptores/fisiologia , Regeneração/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos
7.
Opt Lett ; 46(3): 649-652, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528431

RESUMO

We employed scattering-type scanning near-field optical microscopy (s-SNOM) to explore the implantation of gallium ions in a silicon substrate after focused ion beam (FIB) etching. Different ion doses were applied, and the s-SNOM amplitude image contrast between the processed and unprocessed regions was investigated. The results demonstrate that the contrast decreases along with the increase of the ion dose. A similar dependence of the residual gallium element concentration on the ion dose is found from the energy dispersive spectroscopy. Such comparisons imply that s-SNOM imaging is sensitive to the implanted ions. The s-SNOM aided analysis of FIB etching can benefit the fabrication optimization, especially when the processed materials' properties are of critical importance.

8.
Nanotechnology ; 32(29)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33784663

RESUMO

To enhance contact resonance atomic force microscopy (CR-AFM) and harmonic AFM imaging simultaneously, we design a multifunctional cantilever. Precise tailoring of the cantilever's dynamic properties is realized by either mass-removing or mass-adding. As prototypes, focused ion beam drilling or depositing is used to fabricate the optimized structures. CR-AFM subsurface imaging on circular cavities covered by a piece of highly oriented pyrolytic graphite validates the improved CR frequency to contact stiffness sensitivity. The detectable subsurface depth and cavity radius increase accordingly by using the multifunctional cantilever. At the same time, the free resonance frequency of the second mode is tuned to an integer multiple of the fundamental one. Harmonic AFM imaging on polystyrene and low-density polystyrene mixture shows the improved harmonic amplitude contrast and signal strength on the two material phases. The multifunctional cantilever can be extended to enhance other similar AFM operation modes and it has potential applications in relevant fields such as mechanical characterization and subsurface imaging.

9.
J Neurosci ; 39(33): 6425-6438, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31209173

RESUMO

During nervous system development, axons often undergo elaborate changes in branching patterns before circuits have achieved their mature patterns of innervation. In the auditory system, type I spiral ganglion neurons (SGNs) project their peripheral axons into the cochlear epithelium and then undergo a process of branch refinement before forming synapses with sensory hair cells. Here, we report that Semaphorin-5B (Sema5B) acts as an important mediator of this process. During cochlear development in mouse, immature hair cells express Sema5B, whereas the SGNs express both PlexinA1 and PlexinA3, which are known Sema5B receptors. In these studies, genetic sparse labeling and three-dimensional reconstruction techniques were leveraged to determine the morphologies of individual type I SGNs after manipulations of Sema5B signaling. Treating cultured mouse cochleae with Sema5B-Fc (to activate Plexin-As) led to type I SGNs with less numerous, but longer terminal branches. Conversely, cochleae from Sema5b knock-out mice showed type I SGNs with more numerous, but shorter terminal branches. In addition, conditional loss of Plxna1 in SGNs (using Bhlhb5Cre) led to increased type I SGN branching, suggesting that PlexinA1 normally responds to Sema5B in this process. In these studies, mice of either sex were used. The data presented here suggest that Sema5B-PlexinA1 signaling limits SGN terminal branch numbers without causing axonal repulsion, which is a role that distinguishes Sema5B from other Semaphorins in cochlear development.SIGNIFICANCE STATEMENT The sensorineural components of the cochlea include hair cells, which respond mechanically to sound waves, and afferent spiral ganglion neurons (SGNs), which respond to glutamate released by hair cells and transmit auditory information into the CNS. An important component of synapse formation in the cochlea is a process of SGN "debranching" whereby SGNs lose extraneous branches before developing unramified bouton endings that contact the hair cells. In this work, we have found that the transmembrane ligand Semaphorin-5B and its receptor PlexinA1 regulate the debranching process. The results in this report provide new knowledge regarding the molecular control of cochlear afferent innervation.


Assuntos
Neurogênese/fisiologia , Neurônios/metabolismo , Semaforinas/metabolismo , Gânglio Espiral da Cóclea/embriologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Gânglio Espiral da Cóclea/metabolismo
11.
Clin Sci (Lond) ; 134(17): 2381-2398, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32880392

RESUMO

Skeletal muscle is responsible for the majority of glucose disposal in the body. Insulin resistance in the skeletal muscle accounts for 85-90% of the impairment of total glucose disposal in patients with type 2 diabetes (T2D). However, the mechanism remains controversial. The present study aims to investigate whether AKT2 deficiency causes deficits in skeletal muscle development and metabolism, we analyzed the expression of molecules related to skeletal muscle development, glucose uptake and metabolism in mice of 3- and 8-months old. We found that AMP-activated protein kinase (AMPK) phosphorylation and myocyte enhancer factor 2 (MEF2) A (MEF2A) expression were down-regulated in AKT2 knockout (KO) mice, which can be inverted by AMPK activation. We also observed reduced mitochondrial DNA (mtDNA) abundance and reduced expression of genes involved in mitochondrial biogenesis in the skeletal muscle of AKT2 KO mice, which was prevented by AMPK activation. Moreover, AKT2 KO mice exhibited impaired AMPK signaling in response to insulin stimulation compared with WT mice. Our study establishes a new and important function of AKT2 in regulating skeletal muscle development and glucose metabolism via AMPK-dependent signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Homeostase , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Envelhecimento/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Linhagem Celular , Redes Reguladoras de Genes/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Mutação com Perda de Função , Fatores de Transcrição MEF2/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/ultraestrutura , Tamanho do Órgão/efeitos dos fármacos , Biogênese de Organelas , Proteínas Proto-Oncogênicas c-akt/deficiência , Ribonucleotídeos/farmacologia , Sarcopenia/patologia , Transdução de Sinais/efeitos dos fármacos
12.
Semin Cell Dev Biol ; 65: 80-87, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27760385

RESUMO

In hearing, mechanically sensitive hair cells (HCs) in the cochlea release glutamate onto spiral ganglion neurons (SGNs) to relay auditory information to the central nervous system (CNS). There are two main SGN subtypes, which differ in morphology, number, synaptic targets, innervation patterns and firing properties. About 90-95% of SGNs are the type I SGNs, which make a single bouton connection with inner hair cells (IHCs) and have been well described in the canonical auditory pathway for sound detection. However, less attention has been given to the type II SGNs, which exclusively innervate outer hair cells (OHCs). In this review, we emphasize recent advances in the molecular mechanisms that control how type II SGNs develop and form connections with OHCs, and exciting new insights into the function of type II SGNs.


Assuntos
Células Ciliadas Auditivas/metabolismo , Audição/fisiologia , Mecanotransdução Celular , Células Receptoras Sensoriais/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula/fisiologia , Efrina-A5/genética , Efrina-A5/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ácido Glutâmico/metabolismo , Células Ciliadas Auditivas/citologia , Humanos , Mamíferos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Células Receptoras Sensoriais/citologia , Gânglio Espiral da Cóclea/citologia
13.
Sensors (Basel) ; 19(3)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736294

RESUMO

Recently, humidity sensors have been investigated extensively due to their broad applications in chip fabrication, health care, agriculture, amongst others. We propose a capacitive humidity sensor with a shielding electrode under the interdigitated electrode (SIDE) based on polyimide (PI). Thanks to the shielding electrode, this humidity sensor combines the high sensitivity of parallel plate capacitive sensors and the fast response of interdigitated electrode capacitive sensors. We use COMSOL Multiphysics to design and optimize the SIDE structure. The experimental data show very good agreement with the simulation. The sensitivity of the SIDE sensor is 0.0063% ± 0.0002% RH. Its response/recovery time is 20 s/22 s. The maximum capacitance drift under different relative humidity is 1.28% RH.

15.
J Hazard Mater ; 476: 135100, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38972200

RESUMO

This research proposes a simple and novel strategy for the green detection of antibiotics along with the reduction of microplastic and humic acid (HA) hazards. The entire process is based on a single-step solvent-sieving method to separate HA into insoluble (IHA) and soluble (SHA) components, subsequently recombining and designing the application according to the original characteristics of selected fractions in accordance with the zero-waste principle. IHA was applied as a dispersive solid phase extraction (DSPE) sorbent without chemical modification for the enrichment of trace MACs in complex biological matrices. The recovery of MACs was 74.06-100.84 % in the range of 2.5-1000 µg∙kg-1. Furthermore, SHA could be combined with biodegradable polyvinyl alcohol (PVA) to prepare multifunctional composite films. SHA endows the PVA film with favorable mechanical properties, excellent UV shielding as well as oxidation resistance performance. Compared with pure PVA, the tensile strength, toughness, antioxidant and UV-protection properties were increased to 157.3 Mpa, 258.6 MJ·m-3, 78.6 % and 60 % respectively. This study achieved a green and economically valuable utilization of all components of waste HA, introduced a novel approach for monitoring and controlling harmful substances and reducing white pollution. This has significant implications for promoting sustainable development and recovering valuable resources.

16.
Science ; 383(6678): 94-101, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38127809

RESUMO

Copper nanoparticle-based catalysts have been extensively applied in industry, but the nanoparticles tend to sinter into larger ones in the chemical atmospheres, which is detrimental to catalyst performance. In this work, we used dealuminated Beta zeolite to support copper nanoparticles (Cu/Beta-deAl) and showed that these particles become smaller in methanol vapor at 200°C, decreasing from ~5.6 to ~2.4 nanometers in diameter, which is opposite to the general sintering phenomenon. A reverse ripening process was discovered, whereby migratable copper sites activated by methanol were trapped by silanol nests and the copper species in the nests acted as new nucleation sites for the formation of small nanoparticles. This feature reversed the general sintering channel, resulting in robust catalysts for dimethyl oxalate hydrogenation performed with supported copper nanoparticles for use in industry.

17.
Microsc Res Tech ; 86(8): 929-942, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37119500

RESUMO

Due to the trade-off between the field of view and resolution of various microscopes, obtaining a wide-view panoramic image through high-resolution image tiles is frequently encountered and demanded in numerous applications. Here, we propose an automatic image mosaic strategy for sequential 2D time-lapse scanning electron microscopy (SEM) images. This method can accurately compute pairwise translations among serial image tiles with indeterminate overlapping areas. The detection and matching of feature points are limited by geographical coordinates, thus avoiding accidental mismatching. Moreover, the nonlinear deformation of the mosaic part is also taken into account. A smooth stitching field is utilized to gradually transform the perspective transformation in overlapping regions into the linear transformation in non-overlapping regions. Experimental results demonstrate that better image stitching accuracy can be achieved compared with some other image mosaic algorithms. Such a method has potential applications in high-resolution large-area analysis using serial microscopy images. RESEARCH HIGHLIGHTS: An automatic image mosaic strategy for processing sequential scanning electron microscopy images is proposed. A smooth stitching field is applied in the image mosaic. Improved stitching accuracy is achieved compared with other conventional mosaic methods.

18.
PeerJ ; 11: e15855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637162

RESUMO

Background: Vascular calcification (VC) has been observed in patients with hemodialysis, whereas few studies have investigated calcification in the upper extremity vasculature. Both ultrasound and X-ray are used to investigate the calcification of arteries in patients. However, there is a lack of data on the consistency between these two methods. The aim of this study was to investigate the occurrence of VC in the radial and ulnar arteries of hemodialysis patients and investigate the detection consistency in VC between ultrasound and X-ray. Methods: Ultrasound and X-ray examinations were performed in the radial and ulnar arteries of both the left and right upper extremities of 40 patients on hemodialysis. The calcification status of arteries was evaluated by the calcification index from ultrasound and X-ray respectively. Clinical variables of patients were collected from all the involved patients. Results: Of the 40 patients, VC was detected in 31 patients by ultrasound, while X-ray detected VC in 22 patients. Compared to ultrasound assessment, X-ray assessment was 73.21% sensitive but only 66.35% specific with a positive predictive value of 53.95% for detecting calcifications in the radial or ulnar artery. The level of agreement between ultrasound and X-ray results was fair. In addition, our data showed that more ulnar arteries had VCs than the corresponding radial arteries. Conclusion: Ultrasound is more sensitive in detecting the presence of calcified atherosclerotic lesions. Ultrasound and X-ray exhibited fair consistency. Ultrasound screening for upper extremity radial and ulnar arteries in hemodialysis patients may deserve attention to explore its clinical significance.


Assuntos
Ultrassom , Calcificação Vascular , Humanos , Raios X , Calcificação Vascular/diagnóstico por imagem , Extremidade Superior/diagnóstico por imagem , Artéria Ulnar/diagnóstico por imagem
19.
J Hazard Mater ; 451: 131064, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871461

RESUMO

Frequent crude oil spills and illegal discharges of industrial organic pollutants cause serious damage to the ecological environment and considerable loss of valuable resources. Therefore, there is an urgent need to develop efficient strategies to separate and recover oils or reagents from sewage. Herein, a green, facile and rapid one-step hydration method was applied to obtain the composite sponge (ZIF-8-PDA@MS) that monodispersed zeolitic imidazolate framework-8 nanoparticles with high porosity and large specific surface area were firmly loaded onto the melamine sponge by ligand exchange and the self-assembly of dopamine. The water contact angle of ZIF-8-PDA@MS with multiscale hierarchical porous structure could reach 162°, which remained stable over a long period of time and a wide pH range. ZIF-8-PDA@MS displayed excellent adsorption capacities (up to 85.45-168.95 g⋅g-1), and could be reused at least 40 times. Besides, ZIF-8-PDA@MS exhibited remarkable photothermal effect. Simultaneously, Silver nanoparticle-immobilized composite sponges were also prepared via in-situ reduction of silver ions to inhibit bacterial contamination. The composite sponge developed in this work can be used not only for the treatment of industrial sewage, but also for the emergency response of large-scale marine oil spill accidents, which has inestimable practical value for water decontamination.

20.
ACS Cent Sci ; 9(6): 1119-1128, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37396866

RESUMO

Interfacial electron-transfer (ET) reactions underpin the interconversion of electrical and chemical energy. It is known that the electronic state of electrodes strongly influences ET rates because of differences in the electronic density of states (DOS) across metals, semimetals, and semiconductors. Here, by controlling interlayer twists in well-defined trilayer graphene moirés, we show that ET rates are strikingly dependent on electronic localization in each atomic layer and not the overall DOS. The large degree of tunability inherent to moiré electrodes leads to local ET kinetics that range over 3 orders of magnitude across different constructions of only three atomic layers, even exceeding rates at bulk metals. Our results demonstrate that beyond the ensemble DOS, electronic localization is critical in facilitating interfacial ET, with implications for understanding the origin of high interfacial reactivity typically exhibited by defects at electrode-electrolyte interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA