Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(19): e2201288119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35507870

RESUMO

African swine fever virus (ASFV) is the causative agent of African swine fever, a highly contagious and usually fatal disease in pigs. The pathogenesis of ASFV infection has not been clearly elucidated. Here, we used single-cell RNA-sequencing technology to survey the transcriptomic landscape of ASFV-infected primary porcine alveolar macrophages. The temporal dynamic analysis of viral genes revealed increased expression of viral transmembrane genes. Molecular characteristics in the ASFV-exposed cells exhibited the activation of antiviral signaling pathways with increased expression levels of interferon-stimulated genes and inflammatory- and cytokine-related genes. By comparing infected cells with unexposed cells, we showed that the unfolded protein response (UPR) pathway was activated in low viral load cells, while the expression level of UPR-related genes in high viral load cells was less than that in unexposed cells. Cells infected with various viral loads showed signature transcriptomic changes at the median progression of infection. Within the infected cells, differential expression analysis and coregulated virus­host analysis both demonstrated that ASFV promoted metabolic pathways but inhibited interferon and UPR signaling, implying the regulation pathway of viral replication in host cells. Furthermore, our results revealed that the cell apoptosis pathway was activated upon ASFV infection. Mechanistically, the production of tumor necrosis factor alpha (TNF-α) induced by ASFV infection is necessary for cell apoptosis, highlighting the importance of TNF-α in ASFV pathogenesis. Collectively, the data provide insights into the comprehensive host responses and complex virus­host interactions during ASFV infection, which may instruct future research on antiviral strategies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus da Febre Suína Africana/genética , Animais , Antivirais/metabolismo , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Suínos , Replicação Viral/fisiologia
2.
Neuroimage ; 291: 120592, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548037

RESUMO

The growing trend of bilingual education between Chinese and English has contributed to a rise in the number of early bilingual children, who were exposed to L2 prior to formal language instruction of L1. The L2-L1 transfer effect in an L1-dominant environment has been well established. However, the threshold of L2 proficiency at which such transfer manifests remains unclear. This study investigated the behavioral and neural processes involved when manipulating phonemes in an auditory phonological task to uncover the transfer effect in young bilingual children. Sixty-two first graders from elementary schools in Taiwan were recruited in this study (29 Chinese monolinguals, 33 Chinese-English bilinguals). The brain activity was measured using fNIRS (functional near-infrared spectroscopy). Bilingual children showed right lateralization to process Chinese and left lateralization to process English, which supports more on the accommodation effect within the framework of the assimilation-accommodation hypothesis. Also, compared to monolinguals, bilingual children showed more bilateral frontal activation in Chinese, potentially reflecting a mixed influence from L2-L1 transfer effects and increased cognitive load of bilingual exposure. These results elucidate the developmental adjustments in the neural substrates associated with early bilingual exposure in phonological processing, offering valuable insights into the bilingual learning process.


Assuntos
Multilinguismo , Criança , Humanos , Linguística , China
3.
J Virol ; 97(10): e0082423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37724880

RESUMO

IMPORTANCE: African swine fever (ASF) is an acute, hemorrhagic, and severe porcine infectious disease caused by African swine fever virus (ASFV). ASF outbreaks severely threaten the global pig industries and result in serious economic losses. No safe and efficacious commercial vaccine is currently available except in Vietnam. To date, large gaps in the knowledge concerning viral biological characteristics and immunoevasion strategies have hindered the ASF vaccine design. In this study, we demonstrate that pD129L negatively regulates the type I interferon (IFN) signaling pathway by interfering with the interaction of the transcriptional coactivator p300 and IRF3, thereby inhibiting the induction of type I IFNs. This study reveals a novel immunoevasion strategy employed by ASFV, shedding new light on the intricate mechanisms for ASFV to evade the host immune responses.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteína p300 Associada a E1A , Fator Regulador 3 de Interferon , Interferon Tipo I , Animais , Febre Suína Africana/virologia , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Suínos , Fatores de Transcrição/metabolismo , Vacinas/metabolismo , Proteína p300 Associada a E1A/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Evasão da Resposta Imune
4.
Hum Brain Mapp ; 44(13): 4812-4829, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37483170

RESUMO

Over the course of literacy development, children learn to recognize word sounds and meanings in print. Yet, they do so differently across alphabetic and character-based orthographies such as English and Chinese. To uncover cross-linguistic influences on children's literacy, we asked young Chinese-English simultaneous bilinguals and English monolinguals (N = 119, ages 5-10) to complete phonological and morphological awareness (MA) literacy tasks. Children completed the tasks in the auditory modality in each of their languages during functional near-infrared spectroscopy neuroimaging. Cross-linguistically, comparisons between bilinguals' two languages revealed that the task that was more central to reading in a given orthography, such as phonological awareness (PA) in English and MA in Chinese, elicited less activation in the left inferior frontal and parietal regions. Group comparisons between bilinguals and monolinguals in English, their shared language of academic instruction, revealed that the left inferior frontal was less active during phonology but more active during morphology in bilinguals relative to monolinguals. MA skills are generally considered to have greater language specificity than PA skills. Bilingual literacy training in a skill that is maximally similar across languages, such as PA, may therefore yield greater automaticity for this skill, as reflected in the lower activation in bilinguals relative to monolinguals. This interpretation is supported by negative correlations between proficiency and brain activation. Together, these findings suggest that both the structural characteristics and literacy experiences with a given language can exert specific influences on bilingual and monolingual children's emerging brain networks for learning to read.


Assuntos
Alfabetização , Multilinguismo , Criança , Humanos , Linguística , Neuroimagem
5.
J Virol ; 96(22): e0095422, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36326277

RESUMO

The H240R protein (pH240R), encoded by the H240R gene of African swine fever virus (ASFV), is a 241-amino-acid capsid protein. We previously showed that the deletion of H240R from the ASFV genome, creating ASFV-ΔH240R, resulted in an approximately 2-log decrease in infectious virus production compared with the wild-type ASFV strain (ASFV-WT), and ASFV-ΔH240R induced higher interleukin 1ß (IL-1ß) production in porcine alveolar macrophages (PAMs) than did ASFV-WT, but the underlying mechanism remains to be elucidated. Here, we demonstrate that the activation of the NF-κB signaling and NLRP3 inflammasome was markedly induced in PAMs upon ASFV-ΔH240R infection compared with ASFV-WT. Moreover, pH240R inhibited NF-κB activation by interacting with NEMO and promoting the autophagy-mediated lysosomal degradation of NEMO, resulting in reduced pro-IL-1ß transcription. Strikingly, NLRP3 deficiency in PAMs inhibited the ASFV-ΔH240R-induced IL-1ß secretion and caspase 1 activation, indicating an essential role of NLRP3 inflammasome activation during ASFV-ΔH240R replication. Mechanistically, pH240R interacted with NLRP3 to inhibit its oligomerization, leading to decreased IL-1ß production. Furthermore, the inhibition of the NF-κB signaling and NLRP3 inflammasome activation promoted ASFV-ΔH240R replication in PAMs. Taken together, the results of this study reveal an antagonistic mechanism by which pH240R suppresses the host immune response by manipulating activation of the NF-κB signaling and NLRP3 inflammasome, which might guide the rational design of live attenuated vaccines or therapeutic strategies against ASF in the future. IMPORTANCE African swine fever (ASF), a lethal hemorrhagic disease, is caused by African swine fever virus (ASFV). There are no commercially available vaccines or antivirals for the disease. Here, we showed that ASFV with a deletion of the H240R gene exhibits high-level expression of interleukin 1ß (IL-1ß), a proinflammatory cytokine, in porcine alveolar macrophages and that the H240R protein (pH240R) exhibits robust inhibitory effects on IL-1ß transcription and production. More specifically, pH240R inhibited NF-κB activation via the autophagy-mediated lysosomal degradation of NEMO, leading to the decrease of pro-IL-1ß transcription. In addition, pH240R interacted with NLRP3 to inhibit its oligomerization, leading to decreased IL-1ß production. Our results indicate that pH240R is involved in the evasion of host innate immunity and provide a novel target for the development of a live attenuated vaccine against ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo
6.
J Virol ; 96(3): e0166721, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787458

RESUMO

African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus that causes African swine fever, a lethal hemorrhagic disease that currently threatens the pig industry. Recent studies have identified the viral structural proteins of infectious ASFV particles. However, the functional roles of several ASFV structural proteins remain largely unknown. Here, we characterized the function of the ASFV structural protein H240R (pH240R) in virus morphogenesis. pH240R was identified as a capsid protein by using immunoelectron microscopy and interacted with the major capsid protein p72 by pulldown assays. Using a recombinant ASFV, ASFV-ΔH240R, with the H240R gene deleted from the wild-type ASFV (ASFV-WT) genome, we revealed that the infectious progeny virus titers were reduced by approximately 2.0 logs compared with those of ASFV-WT. Furthermore, we demonstrated that the growth defect was due to the generation of noninfectious particles with a higher particle-to-infectious titer ratio in ASFV-ΔH240R-infected primary porcine alveolar macrophages (PAMs) than in those infected with ASFV-WT. Importantly, we found that pH240R did not affect virus-cell binding, endocytosis, or egress but did affect ASFV assembly; noninfectious virions containing large aberrant tubular and bilobulate structures comprised nearly 98% of all virions observed in ASFV-ΔH240R-infected PAMs by electron microscopy. Notably, we demonstrated that ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in PAMs. Collectively, we show for the first time that pH240R is essential for ASFV icosahedral capsid formation and infectious particle production. Also, these results highlight the importance of pH240R in ASFV morphogenesis and provide a novel target for the development of ASF vaccines and antivirals. IMPORTANCE African swine fever is a lethal hemorrhagic disease of global concern that is caused by African swine fever virus (ASFV). Despite extensive research, there exist relevant gaps in knowledge of the fundamental biology of the viral life cycle. In this study, we identified pH240R as a capsid protein that interacts with the major capsid protein p72. Furthermore, we showed that pH240R was required for the efficient production of infectious progeny virions as indicated by the H240R-deleted ASFV mutant (ASFV-ΔH240R). More specifically, pH240R directs the morphogenesis of ASFV toward the icosahedral capsid in the process of assembly. In addition, ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in primary porcine alveolar macrophages. Our results elucidate the role of pH240R in the process of ASFV assembly, which may instruct future research on effective vaccines or antiviral strategies.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/genética , Febre Suína Africana/metabolismo , Proteínas do Capsídeo/genética , Citocinas/metabolismo , Macrófagos/metabolismo , Deleção de Sequência , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/ultraestrutura , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Citocinas/genética , Suscetibilidade a Doenças/imunologia , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Suínos , Vírion/ultraestrutura , Internalização do Vírus , Replicação Viral
7.
BMC Cancer ; 23(1): 204, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869328

RESUMO

BACKGROUND: Laparoscopic colorectal surgery has been proved to have similar oncological outcomes with open surgery. Due to the lack of tactile perception, surgeons may have misjudgments in laparoscopic colorectal surgery. Therefore, the accurate localization of a tumor before surgery is important, especially in the early stages of cancer. Autologous blood was thought a feasible and safe tattooing agent for preoperative endoscopic localization but its benefits remain controversial. We therefore proposed this randomized trial to the accuracy and safety of autogenous blood localization in small, serosa-negative lesion which will be resected by laparoscopic colectomy. METHODS: The current study is a single-center, open-label, non-inferiority, randomized controlled trial. Eligible participants would be aged 18-80 years and diagnosed with large lateral spreading tumors that could not be treated endoscopically, malignant polyps treated endoscopically that required additional colorectal resection, and serosa-negative malignant colorectal tumors (≤ cT3). A total of 220 patients would be randomly assigned (1:1) to autologous blood group or intraoperative colonoscopy group. The primary outcome is the localization accuracy. The secondary endpoint is adverse events related to endoscopic tattooing. DISCUSSION: This trial will investigate whether autologous blood marker achieves similar localization accuracy and safety in laparoscopic colorectal surgery compared to intraoperative colonoscopy. If our research hypothesis is statistically proved, the rational introduction of autologous blood tattooing in preoperative colonoscopy can help improve identification of the location of tumors for laparoscopic colorectal cancer surgery, performing an optimal resection, and minimizing unnecessary resections of normal tissues, thereby improving the patient's quality of life. Our research data will also provide high quality clinical evidence and data support for the conduction of multicenter phase III clinical trials. TRIAL REGISTRATION: This study is registered with ClinicalTrials.gov, NCT05597384. Registered 28 October 2022.


Assuntos
Neoplasias do Colo , Laparoscopia , Humanos , Qualidade de Vida , Colonoscopia , Colectomia
8.
Dev Sci ; 26(1): e13251, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35188687

RESUMO

How do early bilingual experiences influence children's neural architecture for word processing? Dual language acquisition can yield common influences that may be shared across different bilingual groups, as well as language-specific influences stemming from a given language pairing. To investigate these effects, we examined bilingual English speakers of Chinese or Spanish, and English monolinguals, all raised in the US (N = 152, ages 5-10). Children completed an English morphological word processing task during fNIRS neuroimaging. The findings revealed both language-specific and shared bilingual effects. The language-specific effects were that Chinese and Spanish bilinguals showed principled differences in their neural organization for English lexical morphology. The common bilingual effects shared by the two groups were that in both bilingual groups, increased home language proficiency was associated with stronger left superior temporal gyrus (STG) activation when processing the English word structures that are most dissimilar from the home language. The findings inform theories of language and brain development during the key periods of neural reorganization for learning to read by illuminating experience-based plasticity in linguistically diverse learners.


Assuntos
Multilinguismo , Criança , Humanos , Pré-Escolar , População do Leste Asiático , Idioma , Desenvolvimento da Linguagem , Encéfalo/fisiologia
9.
Bioorg Chem ; 140: 106814, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657197

RESUMO

Phosphatidylinositol 3-kinase (PI3K) signaling is among the most common alterations in cancer and has become a key target for cancer drug development. Based on a 4-methyl quinazoline scaffold, we designed and synthesized a novel series of bivalent PI3K inhibitors with different linker lengths and types. Bivalent PI3K inhibitor 27 demonstrates improved PI3K potency and antiproliferative cell activity, relative to the corresponding monovalent inhibitor 11. Compound 27 also significantly blocks the PI3K signal pathway, induces cell cycle arrest in G1 phase, and inhibits colony formation and cell migration. Furthermore, compound 27 shows dose-dependent anticancer efficacies in a HGC-27 xenograft mice model. Overall, this work provides a possible strategy to discover novel PI3K inhibitors for the treatment of cancers.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Animais , Camundongos , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinase , Movimento Celular , Modelos Animais de Doenças , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
10.
Bioorg Med Chem Lett ; 71: 128825, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35644299

RESUMO

The synergistic anti-tumor effect by simultaneous inhibitions of PI3K and HDAC has been verified to provide the rationality of PI3K/HDAC dual inhibitors for cancer treatment. Notably, the outstanding effect of PI3K/HDAC dual inhibitors against DLBCL has been paid much attention, especially for RR-DLBCL. Our previously reported 4-methylquinazoine scaffold based PI3K/HDAC dual inhibitors could suppress the growth of solid tumors and hematologic malignancies both in vitro and in vivo, validating the potential as new therapeutic agents for cancer. In this research, we further investigated the anti-tumor activity of one of our compounds against DLBCL cell lines and in vivo zebrafish xenograft model as well as the underlying mechanism, hoping to provide a novel therapeutic agent for treating DLBCL.


Assuntos
Inibidores de Histona Desacetilases , Linfoma Difuso de Grandes Células B , Animais , Apoptose , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
11.
Anal Bioanal Chem ; 414(9): 2991-3003, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35106612

RESUMO

Ratiometric electrochemical assays have been demonstrated to be more sensitive and selective in various sensing events, mainly due to their affordable built-in correction and good self-reference capability. But it is known that complicated modification and labeling operations usually are necessary for the construction of ratiometric electrochemical assays, therefore is a hot and important issue needing consideration carefully. We herein report a new yet simple bare electrode-based ratiometric electrochemical bioassay to achieve sensitive and selective analysis of alkaline phosphatase (ALP), using a liquid phase system that contains CoOOH nanozymes and commercially available indicator substrate. This proposed bioassay works based on the ratiometric change of dual electrochemical signals, arising from an exclusive target ALP-triggered hydrolysis of electrochemical substrate p-nitrophenyl phosphate (PNPP). In this design, the two hydrolyzed products of electrochemically active p-nitrophenol (PNP) and electrochemically inactive phosphate anion (PO43-) are responsible together for the ratiometric electrochemical analysis of ALP. PNP exhibits a straightforward current response toward ALP content; however, PO43- cannot show a direct electrochemical signal thus is rationally designed to offer an alternative response by linking it with the specific CoOOH nanozyme-catalyzed reaction of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, in which the nanozyme-catalyzed product oxTMB shows a direct reduction current at the GCE, and significantly decreases with increasing PO43- species due to the good inhibition of PO43- toward CoOOH nanozyme activity. As a result, a ratiometric electrochemical strategy for ALP analysis with a low limit of detection of 0.366 U/L (S/N = 3) was successfully achieved by integrating the above direct and indirect dual electrochemical responses. This developed bioassay can allow the quantitative diagnosis of ALP activity especially with a label-free and modification-free merit, therefore paving the way for simple, convenient, and portable electroanalytical tools in biosensing design and application.


Assuntos
Fosfatase Alcalina , Peróxido de Hidrogênio , Fosfatase Alcalina/análise , Eletrodos
12.
Child Dev ; 93(1): 84-100, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34570366

RESUMO

This study investigates the cross-linguistic transfer of literacy skills in Spanish-English, Chinese-English bilingual, and English monolingual children (N = 283, 5-10 years). Research question 1 examines English literacy and asks how phonological and morpho-semantic skills contribute to word reading as a function of children's language background. Structural equation modeling revealed contrasting bilingual effects: compared to English monolinguals, Spanish-English bilinguals relied more on phonological awareness in word reading, whereas Chinese-English bilinguals relied more on lexical knowledge. Research question 2 examines relations between bilinguals' heritage language proficiency and English literacy. Results revealed direct and indirect effects of heritage language meta-linguistic skills on English word reading. The study yields implications for reading theories and instructional practices in optimizing literacy in linguistically diverse children.


Assuntos
Idioma , Multilinguismo , Criança , China , Humanos , Linguística , Leitura
13.
BMC Public Health ; 22(1): 2025, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335401

RESUMO

BACKGROUND: Gastric cancer is a major public health problem worldwide. Social media has affected public's daily lives in ways no one ever thought possible. Both TikoTok and its Chinese version Douyin are the most popular short video posting platform. This study aimed to evaluate the quality, accuracy, and completeness of videos for gastric cancer on TikTok and Douyin. METHODS: The terms "gastric cancer" was searched on TikTok in both English and Japanese, and on Douyin in Chinese. The first 100 videos in three languages (website's default setting) were checked. QUality Evaluation Scoring Tool (QUEST) and DISCERN as the instrument for assessing the quality of the information in each video. Content was analysed under six categories (aetiology, anatomy, symptoms, preventions, treatments, and prognosis). The educational value and completeness were evaluated with a checklist developed by the researchers. RESULTS: A total of 78 videos in English, 63 in Japanese, and 99 in Chinese were analyzed. The types of sources were as follows: 6.4% in English, 4.8% in Japanese, and 57.6% in Chinese for health professionals; 93.6% in English, 95.2% in Japanese, and 3.0% in Chinese for private users; none in English and Japanese, but 39.4% in Chinese for other sources. In all, 20.5% in English, 17.5% in Japanese, and 93.9% in Chinese of videos had useful information about gastric cancer. Among the useful videos, the videos published in Chinese had the highest QUEST(p < 0.05) and DISCERN scores(p < 0.05), followed by those published in Japanese. Among the educational videos, prognosis in English (37.5%), symptoms in Japanese (54.5%), and prevention in Chinese (47.3%) were the most frequently covered topic. CONCLUSIONS: TikTok in English and Japanese might not fully meet the gastric cancer information needs of public, but Douyin in Chinese was the opposite.


Assuntos
Neoplasias , Mídias Sociais , Humanos , Disseminação de Informação , Gravação em Vídeo , Idioma
14.
Biochem Cell Biol ; 99(5): 666-674, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33974808

RESUMO

Liver fibrosis is the most common pathway in most types of chronic liver damage, characterized by an imbalance of ECM degradation and synthesis. Saikosaponin-d (SSd) possesses anti-inflammatory and anti-fibrotic effects. However, the underlying mechanism by which SSd represses hepatic stellate cell (HSC) activation remains unclear. Here, we found that SSd remarkably alleviated carbon tetrachloride (CCl4)-induced liver fibrosis, as evidenced by decreased collagen levels and profibrotic marker (COl1a1 and α-smooth muscle actin (SMA)) expression. SSd repressed CCl4-induced NOD-like receptor family pyrin-domain-containing-3 (NLRP3) activation in fibrotic livers, as suggested by decreased levels of NLRP3, IL-18, and IL-ß. The primary HSCs of CCl4 mice exhibited a significant increase in profibrotic marker expression and NLRP3 activation, but SSd treatment reversed this effect. SSd also repressed TGF-ß-induced profibrotic marker expression and NLRP3 activation in vitro. Mechanistically, TGF-ß decreased the expression of estrogen receptor-ß (ERß) in HSCs, whereas SSd treatment reversed this effect. ERß inhibition enhances NLRP3 activation in HSCs. More importantly, ERß or NLRP3 inhibition partially destroyed the function of SSd in liver fibrosis. In summary, the current data suggest that SSd prevents hepatic fibrosis by regulating the ERß/NLRP3 inflammasome pathway and suggests SSd as a potential agent for treating liver fibrosis.


Assuntos
Receptor beta de Estrogênio/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Ácido Oleanólico/análogos & derivados , Substâncias Protetoras/farmacologia , Saponinas/farmacologia , Animais , Tetracloreto de Carbono , Células Cultivadas , Receptor beta de Estrogênio/metabolismo , Inflamassomos/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Oleanólico/farmacologia
15.
Bioorg Med Chem ; 29: 115890, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285407

RESUMO

As abnormal PI3K signaling is a feature of many types of cancer, the development of orally active PI3K inhibitors is of great significance for targeted cancer therapy. Through integrating strategies of reducing aromatic character/increasing the fraction of sp3 carbons together with scaffold hopping, we designed and synthesized two new series of thieno[2,3-d]pyrimidine and thiazolo[5,4-d]pyrimidine derivatives for use as PI3K inhibitors. Our structure-activity relationship studies led to the identification of thieno[2,3-d]pyrimidine 6a and thiazolo[5,4-d]pyrimidine 7a, which exhibited remarkable nanomolar PI3K potency, good antiproliferative activity, favorable pharmacokinetic properties and significant in vivo anti-cancer efficacy. Notably, thiazolo[5,4-d]pyrimidine 7a had better anti-cancer activity than thieno[2,3-d]pyrimidine 6a and is worthy of further pre-clinical evaluation for its use in cancer treatment.


Assuntos
Antineoplásicos/química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/química , Pirimidinas/química , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinética , Ligação Proteica , Conformação Proteica , Pirimidinas/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade
16.
Anal Bioanal Chem ; 413(14): 3655-3665, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33829276

RESUMO

The development of nanozyme-based photothermometric sensing for point-of-care testing (POCT) heavy metal ions is of great significance for disease diagnosis and health management. Considering the low catalytic activity of most nanozymes at physiological pH, we found bismuth ions (Bi3+) could effectively enhance the peroxidase (POX)-like activity of cetyltrimethylammonium bromide and citrate-capped octahedral gold nanoparticle (CTAB/Cit-AuNP) nanozymes. It is mainly based on Bi3+ ions being able to trigger the surface cleaning effect of CTAB/Cit-AuNPs. Because the more active Bi3+ ions could effectively bind with citrate on the gold surface and competitively destroy the electrostatic interaction between citrate and CTAB, resulting in the removal of CTAB ligands from the gold surface. Without the ligand protection, CTAB/Cit-AuNPs aggregated immediately, and further resulted in a significant activation of the POX-like activity of AuNP nanozymes. Based on this principle, we introduced the enzyme substrate 3,3',5,5'-tetramethylbenzidine (TMB) into this aggregation-induced nanozyme system, and rationally designed a photothermometric platform to quickly and sensitively detect Bi3+ ions by using the good photothermal effect of the oxidation product of TMB (oxTMB). The developed photothermometric method only using a common thermometer has a limit of detection (LOD) as low as 45.7 nM for POCT analysis of Bi3+ ions. This study not only provides a more accurate understanding of the aggregation-induced nanozymes based on the surface cleaning principle, but also shows the potential applications of aggregation-induced nanozymes in the POCT field.

17.
Anal Bioanal Chem ; 413(26): 6627-6637, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34476525

RESUMO

As a new low-cost photothermal nanoprobe, Prussian blue nanoparticles (PB NPs) have been demonstrated to have more potential in photothermometric-based point-of-care testing (POCT) application. However, most of the existing PB NP-based photothermometric sensors were constructed mainly relying on in situ generation of PB NPs or their combination with antigens and antibodies, therefore usually suffering from the inherent defects like complicated preparation and cumbersome surface process as well as high-cost modification. To break this limitation of PB NP-based photothermometric POCT, we proposed an ingenious redox reaction-controlled nanoprobe conversion strategy and successfully applied to photothermometric detection of ascorbate oxidase (AAO). In this design, the heat of PB NP photothermal system under 808-nm laser irradiation dramatically decreased with the addition of AA, due to a unique AA-induced Prussian blue to Prussian white (PB-to-PW) conversion. Upon AAO addition, the heat of reaction system increased because of the enzymatic catalytic reaction between AAO and AA, which led to a significant reduction of AA and resultantly inhibited PB-to-PW conversion. Such target-mediated nanoprobe conversion resulted in an obvious temperature change that could be easily detected by a common thermometer and exhibited good linear ranges from 0.25 to 14 mU/mL with a detection limit as low as 0.21 mU/mL for POCT analysis of AAO. This facile, convenient, and portable photothermometric sensing platform provides an innovative route for the design of PB NP nanoprobe-based photothermometric detection methods. A sensitive photothermometric AAO sensor based on a redox reaction-controlled nanoprobe conversion strategy from Prussian blue to Prussian white.


Assuntos
Ascorbato Oxidase/análise , Técnicas Biossensoriais/métodos , Corantes/química , Ferrocianetos/química , Animais , Ensaios Enzimáticos/métodos , Humanos , Nanopartículas/química , Oxirredução
18.
Molecules ; 25(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053730

RESUMO

A series of novel 2-pyridyl, 4-morpholinyl substituted thiazolo[5,4-b]pyridine analogues have been designed and synthesized in this paper. These thiazolo[5,4-b]pyridines were efficiently prepared in seven steps from commercially available substances in moderate to good yields. All of these N-heterocyclic compounds were characterized by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) analysis and tested for phosphoinositide 3-kinase (PI3K) enzymatic assay. The results indicated that these N-heterocyclic compounds showed potent PI3K inhibitory activity, and the IC50 of a representative compound (19a) could reach to 3.6 nm. The structure-activity relationships (SAR) study showed that sulfonamide functionality was important for PI3Kα inhibitory activity, and 2-chloro-4-florophenyl sulfonamide (19b), or 5-chlorothiophene-2-sulfonamide (19c) showed potent inhibitory activity with a nanomolar IC50 value. The pyridyl attached to thiazolo[5,4-b]pyridine was another key structural unit for PI3Kα inhibitory potency, and replacement by phenyl lead to a significant decrease in activity. Enzymatic Inhibition results showed that compound 19a inhibited PI3Kα, PI3Kγ, or PI3Kδ with a nanomolar IC50 value, but its inhibitory activity on PI3Kß was approximately 10-fold reduced. Further docking analysis revealed that the N-heterocyclic core of compound 19a was directly involved in the binding to the kinase through the key hydrogen bonds interaction.


Assuntos
Inibidores de Fosfoinositídeo-3 Quinase/química , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Piridinas/química , Piridinas/síntese química , Animais , Ativação Enzimática/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Piridinas/farmacologia , Relação Estrutura-Atividade
19.
Chembiochem ; 19(13): 1444-1451, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29633462

RESUMO

Cyclic adenosine diphosphate ribose (cADPR) is an endogenous Ca2+ mobilizer involved in diverse cellular processes. Mimics of cADPR play a crucial role in investigating the molecular mechanism(s) of cADPR-mediated signaling. Here, compound 3, a mimic of cADPR in which a neutral triazole moiety and an ether linkage were introduced to substitute the pyrophosphate and "northern" ribose components, respectively, was synthesized for the first time. The pharmacological activities in Jurkat cells indicated that this mimic is capable of penetrating plasma membrane and inciting Ca2+ release from the endoplasmic reticulum (ER) through the action of ryanodine receptors (RyRs) and triggering Ca2+ influx. Furthermore, a uridine moiety was introduced in place of adenine and the new cADPR mimics 4 and 5 were synthesized. The results of biological investigation showed that these mimics also targeted RyRs and retained moderate Ca2+ agonistic activities. The results indicated that the neutral cADPR mimics had the same targets for inducing Ca2+ signaling.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , ADP-Ribose Cíclica/análogos & derivados , ADP-Ribose Cíclica/metabolismo , Triazóis/metabolismo , ADP-Ribose Cíclica/síntese química , Técnicas de Silenciamento de Genes , Humanos , Células Jurkat , Mitocôndrias/metabolismo , Conformação Molecular , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Triazóis/síntese química , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA