Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(18): e110521, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35929182

RESUMO

Viruses often usurp host machineries for their amplification, but it remains unclear if hosts may subvert virus proteins to regulate viral proliferation. Here, we show that the 17K protein, an important virulence factor conserved in barley yellow dwarf viruses (BYDVs) and related poleroviruses, is phosphorylated by host GRIK1-SnRK1 kinases, with the phosphorylated 17K (P17K) capable of enhancing the abundance of virus-derived small interfering RNAs (vsiRNAs) and thus antiviral RNAi. Furthermore, P17K interacts with barley small RNA-degrading nuclease 1 (HvSDN1) and impedes HvSDN1-catalyzed vsiRNA degradation. Additionally, P17K weakens the HvSDN1-HvAGO1 interaction, thus hindering HvSDN1 from accessing and degrading HvAGO1-carried vsiRNAs. Importantly, transgenic expression of 17K phosphomimetics (17K5D ), or genome editing of SDN1, generates stable resistance to BYDV through elevating vsiRNA abundance. These data validate a novel mechanism that enhances antiviral RNAi through host subversion of a viral virulence protein to inhibit SDN1-catalyzed vsiRNA degradation and suggest new ways for engineering BYDV-resistant crops.


Assuntos
Hordeum , Antivirais , Hordeum/genética , Hordeum/metabolismo , Doenças das Plantas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
2.
BMC Plant Biol ; 24(1): 640, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971763

RESUMO

BACKGROUND: Environmental stresses, including high salinity and drought, severely diminish wheat yield and quality globally. The xyloglucan endotransglucosylase/hydrolase (XTH) family represents a class of cell wall-modifying enzymes and plays important roles in plants growth, development and stress adaptation. However, systematic analyses of XTH family genes and their functions under salt and drought stresses have not been undertaken in wheat. RESULTS: In this study, we identified a total of 135 XTH genes in wheat, which were clustered into three evolutionary groups. These TaXTHs were unevenly distributed on 21 chromosomes of wheat with a majority of TaXTHs located on homelogous groups 2, 3 and 7. Gene duplication analysis revealed that segmental and tandem duplication were the main reasons for the expansion of XTH family in wheat. Interaction network predictions indicated that TaXTHs could interact with multiple proteins, including three kinases, one methyltransferase and one gibberellin-regulated protein. The promoters of the TaXTH genes harbored various cis-acting elements related to stress and hormone responses. RNA-seq data analyses showed that some TaXTH genes were induced by salt and drought stresses. Furthermore, we verified that TaXTH17 was induced by abiotic stresses and phytohormone treatments, and demonstrated that TaXTH17 was localized in the secretory pathway and cell wall. Functional analyses conducted in heterologous expression systems and in wheat established that TaXTH17 plays a negative role in plant resistance to salt and drought. CONCLUSIONS: We identified 135 XTH genes in wheat and conducted comprehensive analyses of their phylogenetic relationships, gene structures, conserved motifs, gene duplication events, chromosome locations, interaction networks, cis-acting elements and gene expression patterns. Furthermore, we provided solid evidence supporting the notion that TaXTH17 plays a negative role in plant resistance to salt and drought stresses. Collectively, our results provide valuable insights into understanding wheat XTHs, particularly their involvement in plant stress responses, and establish a foundation for further functional and mechanistic studies of TaXTHs.


Assuntos
Glicosiltransferases , Família Multigênica , Estresse Fisiológico , Triticum , Triticum/genética , Triticum/enzimologia , Triticum/fisiologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Duplicação Gênica
3.
Plant Biotechnol J ; 22(3): 572-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37855813

RESUMO

Barley yellow dwarf viruses (BYDVs) cause widespread damage to global cereal crops. Here we report a novel strategy for elevating resistance to BYDV infection. The 17K protein, a potent virulence factor conserved in BYDVs, interacted with barley IMP-α1 and -α2 proteins that are nuclear transport receptors. Consistently, a nuclear localization signal was predicted in 17K, which was found essential for 17K to be transported into the nucleus and to interact with IMP-α1 and -α2. Reducing HvIMP-α1 and -α2 expression by gene silencing attenuated BYDV-elicited dwarfism, accompanied by a lowered nuclear accumulation of 17K. Among the eight common wheat CRISPR mutants with two to four TaIMP-α1 and -α2 genes mutated, the triple mutant α1aaBBDD /α2AAbbdd and the tetra-mutant α1aabbdd /α2AAbbDD displayed strong BYDV resistance without negative effects on plant growth under field conditions. The BYDV resistance exhibited by α1aaBBDD /α2AAbbdd and α1aabbdd /α2AAbbDD was correlated with decreased nuclear accumulation of 17K and lowered viral proliferation in infected plants. Our work uncovers the function of host IMP-α proteins in BYDV pathogenesis and generates the germplasm valuable for breeding BYDV-resistant wheat. Appropriate reduction of IMP-α gene expression may be broadly useful for enhancing antiviral resistance in agricultural crops and other economically important organisms.


Assuntos
Luteovirus , Triticum , Triticum/genética , alfa Carioferinas/genética , Resistência à Doença/genética , Melhoramento Vegetal , Luteovirus/genética , Produtos Agrícolas/genética , Expressão Gênica , Doenças das Plantas/genética
4.
Plant Biotechnol J ; 21(1): 122-135, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36128872

RESUMO

Tiller angle is one of the most important agronomic traits and one key factor for wheat ideal plant architecture, which can both increase photosynthetic efficiency and greatly enhance grain yield. Here, a deacetylase HST1-like (TaHST1L) gene controlling wheat tiller angle was identified by the combination of a genome-wide association study (GWAS) and bulked segregant analysis (BSA). Ethyl methane sulfonate (EMS)-mutagenized tetraploid wheat lines with the premature stop codon of TaHST1L exhibited significantly smaller tiller angles than the wild type. TaHST1L-overexpressing (OE) plants exhibited significantly larger tiller angles and increased tiller numbers in both winter and spring wheat, while TaHST1L-silenced RNAi plants displayed significantly smaller tiller angles and decreased tiller numbers. Moreover, TaHST1L strongly interacted with TaIAA17 and inhibited its expression at the protein level, and thus possibly improved the content of endogenous auxin in the basal tissue of tillers. The transcriptomics and metabolomics results indicated that TaHST1L might change plant architecture by mediating auxin signal transduction and regulating endogenous auxin levels. In addition, a 242-bp insertion/deletion (InDel) in the TaHST1L-A1 promoter altered transcriptional activity and TaHST1L-A1b allele with the 242-bp insertion widened the tiller angle of TaHST1L-OE transgenic rice plants. Wheat varieties with TaHST1L-A1b allele possessed the increased tiller angle and grain yield. Further analysis in wheat and its progenitors indicated that the 242-bp InDel possibly originated from wild emmer and was strongly domesticated in the current varieties. Therefore, TaHST1L involved in the auxin signalling pathway showed the big potential to improve wheat yield by controlling plant architecture.


Assuntos
Ácidos Indolacéticos , Oryza , Ácidos Indolacéticos/metabolismo , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Alelos , Grão Comestível/genética , Oryza/genética
5.
Plant Biotechnol J ; 19(5): 897-909, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33225586

RESUMO

The LRK10-like receptor kinases (LRK10L-RLKs) are ubiquitously present in higher plants, but knowledge of their expression and function is still limited. Here, we report expression and functional analysis of TtdLRK10L-1, a typical LRK10L-RLK in durum wheat (Triticum turgidum L. ssp. durum). The introns of TtdLRK10L-1 contained multiple kinds of predicted cis-elements. To investigate the potential effect of these cis-elements on TtdLRK10L-1 expression and function, two types of transgenic wheat lines were prepared, which expressed a GFP-tagged TtdLRK10L-1 protein (TtdLRK10L-1:GFP) from the cDNA or genomic DNA (gDNA) sequence of TtdLRK10L-1 under the native promoter. TtdLRK10L-1:GFP expression was up-regulated by the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) in both types of transgenic plants, with the scale of the elevation being much stronger in the gDNA lines. Both types of transgenic plants exhibited enhanced resistance to Bgt infection relative to wild type control. Notably, the Bgt defence activated in the gDNA lines was significantly stronger than that in the cDNA lines. Further analysis revealed that a putative MYB transcription factor binding site (MYB-BS, CAGTTA) located in TtdLRK10L-1 intron I was critical for the efficient expression and function of TtdLRK10L-1 in Bgt defence. This MYB-BS could also increase the activity of a superpromoter widely used in ectopic gene expression studies in plants. Together, our results deepen the understanding of the expression and functional characteristics of LRK10L-RLKs. TtdLRK10L-1 is likely useful for further dissecting the molecular processes underlying wheat defence against Bgt and for developing Bgt resistant wheat crops.


Assuntos
Resistência à Doença , Triticum , Ascomicetos , Sítios de Ligação , Resistência à Doença/genética , Íntrons/genética , Doenças das Plantas/genética , Triticum/genética
6.
Plant Biotechnol J ; 19(5): 1038-1051, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372381

RESUMO

Heat stress (HS) causes substantial damages to worldwide crop production. As a cool season crop, wheat (Triticum aestivum) is sensitive to HS-induced damages. To support the genetic improvement of wheat HS tolerance (HST), we conducted fine mapping of TaHST1, a locus required for maintaining wheat vegetative and reproductive growth under elevated temperatures. TaHST1 was mapped to the distal terminus of 4AL chromosome arm using genetic populations derived from two BC6 F6 breeding lines showing tolerance (E6015-4T) or sensitivity (E6015-3S) to HS. The 4AL region carrying TaHST1 locus was approximately 0.949 Mbp and contained the last 19 high confidence genes of 4AL according to wheat reference genome sequence. Resequencing of E6015-3S and E6015-4T and haplotype analysis of 3087 worldwide wheat accessions revealed heightened deletion polymorphisms in the distal 0.949 Mbp region of 4AL, which was confirmed by the finding of frequent gene losses in this region in eight genome-sequenced hexaploid wheat cultivars. The great majority (86.36%) of the 3087 lines displayed different degrees of nucleotide sequence deletions, with only 13.64% of them resembling E6015-4T in this region. These deletions can impair the presence and/or function of TaHST1 and surrounding genes, thus rendering global wheat germplasm vulnerable to HS or other environmental adversities. Therefore, conscientious and urgent efforts are needed in global wheat breeding programmes to optimize the structure and function of 4AL distal terminus by ensuring the presence of TaHST1 and surrounding genes. The new information reported here will help to accelerate the ongoing global efforts in improving wheat HST.


Assuntos
Termotolerância , Triticum , Braço , Mapeamento Cromossômico , Melhoramento Vegetal , Triticum/genética
7.
Plant Biotechnol J ; 18(1): 129-140, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141279

RESUMO

Development of marker-free and transgene insertion site-defined (MFTID) transgenic plants is essential for safe application of transgenic crops. However, MFTID plants have not been reported for wheat (Triticum aestivum). Here, we prepared a RNAi cassette for suppressing lipoxygenase (LOX) gene expression in wheat grains using a double right border T-DNA vector. The resultant construct was introduced into wheat genome via Agrobacterium-mediated transformation, with four homozygous marker-free transgenic lines (namely GLRW-1, -3, -5 and -8) developed. Aided by the newly published wheat genome sequence, the T-DNA insertion sites in GLRW-3 and GLRW-8 were elucidated at base-pair resolution. While the T-DNA in GLRW-3 inserted in an intergenic region, that of GLRW-8 inactivated an endogenous gene, which was thus excluded from further analysis. Compared to wild -type (WT) control, GLRW-1, -3 and -5 showed decreased LOX gene expression, lower LOX activity and less lipid peroxidation in the grains; they also exhibited significantly higher germination rates and better seedling growth after artificial ageing treatment. Interestingly, the three GLRW lines also had substantially increased contents of several fatty acids (e.g., linoleic acid and linolenic acid) in their grain and flour samples than WT control. Collectively, our data suggest that suppression of grain LOX activity can be employed to improve the storability and fatty acid content of wheat seeds and that the MFTID line GLRW-3 is likely of commercial value. Our approach may also be useful for developing the MFTID transgenic lines of other crops with enhanced grain storability and fatty acid content.


Assuntos
Ácidos Graxos/química , Triticum/genética , Agrobacterium , DNA Bacteriano/genética , Grão Comestível/química , Grão Comestível/genética , Mutagênese Insercional , Plantas Geneticamente Modificadas/química , Transgenes , Triticum/química
8.
New Phytol ; 225(6): 2526-2541, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31675430

RESUMO

Powdery mildew disease, elicited by the obligate fungal pathogen Blumeria graminis f.sp. tritici (Bgt), causes widespread yield losses in global wheat crop. However, the molecular mechanisms governing wheat defense to Bgt are still not well understood. Here we found that TuACO3, encoding the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase functioning in ethylene (ET) biosynthesis, was induced by Bgt infection of the einkorn wheat Triticum urartu, which was accompanied by increased ET content. Silencing TuACO3 decreased ET production and compromised wheat defense to Bgt, whereas both processes were enhanced in the transgenic wheat overexpressing TuACO3. TuMYB46L, phylogenetically related to Arabidopsis MYB transcription factor AtMYB46, was found to bind to the TuACO3 promoter region in yeast-one-hybrid and EMSA experiments. TuMYB46L expression decreased rapidly following Bgt infection. Silencing TuMYB46L promoted ET content and Bgt defense, but the reverse was observed when TuMYB46L was overexpressed. Hence, decreased expression of TuMYB46L permits elevated function of TuACO3 in ET biosynthesis in Bgt-infected wheat. The TuMYB46L-TuACO3 module regulates ET biosynthesis to promote einkorn wheat defense against Bgt. Furthermore, we found four chitinase genes acting downstream of the TuMYB46L-TuACO3 module. Collectively, our data shed a new light on the molecular mechanisms underlying wheat defense to Bgt.


Assuntos
Resistência à Doença , Triticum , Ascomicetos , Resistência à Doença/genética , Etilenos , Doenças das Plantas , Proteínas de Plantas/genética , Triticum/genética
9.
Theor Appl Genet ; 133(5): 1521-1539, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32020238

RESUMO

KEY MESSAGE: Recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins, which are important determinants of wheat grain quality traits. The new insights obtained and the availability of precise, versatile and high-throughput genome editing technologies will accelerate simultaneous improvement of wheat end-use and health-related traits. Being a major staple food crop in the world, wheat provides an indispensable source of dietary energy and nutrients to the human population. As worldwide population grows and living standards rise in both developed and developing countries, the demand for wheat with high quality attributes increases globally. However, efficient breeding of high-quality wheat depends on critically the knowledge on gluten proteins, which mainly include several families of prolamin proteins specifically accumulated in the endospermic tissues of grains. Although gluten proteins have been studied for many decades, efficient manipulation of these proteins for simultaneous enhancement of end-use and health-related traits has been difficult because of high complexities in their expression, function and genetic variation. However, recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins. Therefore, the main objective of this review is to summarize the genomic and functional genomics information obtained in the last 10 years on gluten protein chromosome loci and genes and the cis- and trans-factors regulating their expression in the grains, as well as the efforts in elucidating the involvement of gluten proteins in several wheat sensitivities affecting genetically susceptible human individuals. The new insights gathered, plus the availability of precise, versatile and high-throughput genome editing technologies, promise to speed up the concurrent improvement of wheat end-use and health-related traits and the development of high-quality cultivars for different consumption needs.


Assuntos
Edição de Genes , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Glutens/metabolismo , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Triticum/genética , Glutens/genética , Triticum/crescimento & desenvolvimento
10.
Plant J ; 95(3): 414-426, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752764

RESUMO

Gliadins are a major component of wheat seed proteins. However, the complex homoeologous Gli-2 loci (Gli-A2, -B2 and -D2) that encode the α-gliadins in commercial wheat are still poorly understood. Here we analyzed the Gli-D2 locus of Xiaoyan 81 (Xy81), a winter wheat cultivar. A total of 421.091 kb of the Gli-D2 sequence was assembled from sequencing multiple bacterial artificial clones, and 10 α-gliadin genes were annotated. Comparative genomic analysis showed that Xy81 carried only eight of the α-gliadin genes of the D genome donor Aegilops tauschii, with two of them each experiencing a tandem duplication. A mutant line lacking Gli-D2 (DLGliD2) consistently exhibited better breadmaking quality and dough functionalities than its progenitor Xy81, but without penalties in other agronomic traits. It also had an elevated lysine content in the grains. Transcriptome analysis verified the lack of Gli-D2 α-gliadin gene expression in DLGliD2. Furthermore, the transcript and protein levels of protein disulfide isomerase were both upregulated in DLGliD2 grains. Consistent with this finding, DLGliD2 had increased disulfide content in the flour. Our work sheds light on the structure and function of Gli-D2 in commercial wheat, and suggests that the removal of Gli-D2 and the gliadins specified by it is likely to be useful for simultaneously enhancing the end-use and health-related traits of common wheat. Because gliadins and homologous proteins are widely present in grass species, the strategy and information reported here may be broadly useful for improving the quality traits of diverse cereal crops.


Assuntos
Genes de Plantas , Loci Gênicos , Gliadina/genética , Valor Nutritivo/genética , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Triticum/genética , Pão , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia
11.
Nature ; 496(7443): 87-90, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23535596

RESUMO

Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.


Assuntos
Genoma de Planta/genética , Triticum/genética , Sequência de Bases , Brachypodium/genética , Produtos Agrícolas/classificação , Produtos Agrícolas/genética , Diploide , Marcadores Genéticos/genética , Dados de Sequência Molecular , Oryza/genética , Filogenia , Sorghum/genética , Sintenia/genética , Triticum/classificação , Zea mays/genética
12.
Theor Appl Genet ; 127(2): 359-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24212587

RESUMO

KEY MESSAGE: Ion beam mutations can be efficiently isolated and deployed for functional comparison of homoeologous loci in polyploid plants, and Glu - 1 loci differ substantially in their contribution to wheat gluten functionality. To efficiently conduct genetic analysis, it is beneficial to have multiple types of mutants for the genes under investigation. Here, we demonstrate that ion beam-induced deletion mutants can be efficiently isolated for comparing the function of homoeologous loci of common wheat (Triticum aestivum). Through fragment analysis of PCR products from M2 plants, ion beam mutants lacking homoeologous Glu-A1, Glu-B1 or Glu-D1 loci, which encode high molecular weight glutenin subunits (HMW-GSs) and affect gluten functionality and end-use quality of common wheat, could be isolated simultaneously. Three deletion lines missing Glu-A1, Glu-B1 or Glu-D1 were developed from the original mutants, with the Glu-1 genomic regions deleted in these lines estimated using newly developed DNA markers. Apart from lacking the target HMW-GSs, the three lines all showed decreased accumulation of low molecular weight glutenin subunits (LMW-GSs) and increased amounts of gliadins. Based on the test data of five gluten and glutenin macropolymer (GMP) parameters obtained with grain samples harvested from two environments, we conclude that the genetic effects of Glu-1 loci on gluten functionality can be ranked as Glu-D1 > Glu-B1 > Glu-A1. Furthermore, it is suggested that Glu-1 loci contribute to gluten functionality both directly (by promoting the formation of GMP) and indirectly (through keeping the balance among HMW-GSs, LMW-GSs and gliadins). Finally, the efficient isolation of ion beam mutations for functional comparison of homoeologous loci in polyploid plants and the usefulness of Glu-1 deletion lines for further studying the contribution of Glu-1 loci to gluten functionality are discussed.


Assuntos
Glutens/metabolismo , Mutação , Triticum/genética , Sequência de Bases , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Glutens/genética , Reação em Cadeia da Polimerase , Poliploidia , Triticum/metabolismo
13.
Plants (Basel) ; 13(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674569

RESUMO

Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.

14.
Plant Sci ; 325: 111465, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36155239

RESUMO

MiR396s play important roles in regulating plant growth and stress response, and great potential for crop yield promotion was anticipated. For more comprehensive and precise understanding of miR396s in Poaceae, we analyzed the phylogenetic linkage, gene expression, and chromosomal distribution of miR396s in this study. Although the mature miR396s' sequences were mostly conserved, differential expression patterns and chromosomal distribution were found among Poaceae species including the major cereal crops rice, wheat, and maize. Consistently, in comparison with rice, wheat and maize plants transformed with the target mimicry construct of miR396 (MIM396) exhibited differential effects on grain size and disease resistance. While the TaMIM396 plants showed increased grain size, panicle length and sensitivity to B. graminis, the ZmMIM396 plants didn't show obvious changes in grain size and disease resistance. In Addition, several GROWTH-REGULATING FACTOR (GRF) genes in wheat and maize were repressed by miR396s, which could be reversed by MIM396, confirming the conserved regulatory roles of miR396 on GRFs. While providing new solution to enhance grain yield in wheat and revealing potential regulatory variations of miR396s in controlling grain size and disease resistance in different crops, this study gives clues to further explore miR396s' functions in other Poaceae species.


Assuntos
MicroRNAs , Oryza , Triticum/genética , Triticum/metabolismo , Poaceae/genética , Zea mays/genética , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Resistência à Doença , Plantas Geneticamente Modificadas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Grão Comestível/genética , Oryza/genética
15.
Sci China Life Sci ; 65(9): 1718-1775, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36018491

RESUMO

Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.


Assuntos
Melhoramento Vegetal , Triticum , Genoma de Planta/genética , Genômica , Fenótipo , Locos de Características Quantitativas/genética , Triticum/genética
16.
Nat Genet ; 53(4): 574-584, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33737755

RESUMO

Rye is a valuable food and forage crop, an important genetic resource for wheat and triticale improvement and an indispensable material for efficient comparative genomic studies in grasses. Here, we sequenced the genome of Weining rye, an elite Chinese rye variety. The assembled contigs (7.74 Gb) accounted for 98.47% of the estimated genome size (7.86 Gb), with 93.67% of the contigs (7.25 Gb) assigned to seven chromosomes. Repetitive elements constituted 90.31% of the assembled genome. Compared to previously sequenced Triticeae genomes, Daniela, Sumaya and Sumana retrotransposons showed strong expansion in rye. Further analyses of the Weining assembly shed new light on genome-wide gene duplications and their impact on starch biosynthesis genes, physical organization of complex prolamin loci, gene expression features underlying early heading trait and putative domestication-associated chromosomal regions and loci in rye. This genome sequence promises to accelerate genomic and breeding studies in rye and related cereal crops.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Produtos Agrícolas/genética , Genoma de Planta , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Secale/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Retroelementos , Amido/biossíntese , Triticum/genética
17.
Sci Adv ; 6(20): eaba3418, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426509

RESUMO

Many animal viral proteins, e.g., Vpr of HIV-1, disrupt host mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. However, it is unknown whether plant viruses may use this mechanism in their pathogenesis. Here, we report that the 17K protein, encoded by barley yellow dwarf viruses and related poleroviruses, delays G2/M transition and disrupts mitosis in both host (barley) and nonhost (fission yeast, Arabidopsis thaliana, and tobacco) cells through interrupting the function of Wee1-Cdc25-CDKA/Cdc2 via direct protein-protein interactions and alteration of CDKA/Cdc2 phosphorylation. When ectopically expressed, 17K disrupts the mitosis of cultured human cells, and HIV-1 Vpr inhibits plant cell growth. Furthermore, 17K and Vpr share similar secondary structural feature and common amino acid residues required for interacting with plant CDKA. Thus, our work reveals a distinct class of mitosis regulators that are conserved between plant and animal viruses and play active roles in viral pathogenesis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Virais/metabolismo
18.
Genetica ; 135(3): 257-65, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18500653

RESUMO

Quantitative trait loci (QTLs) with epistatic and QTL x environment (QE) interaction for heading date were studied using a doubled haploid (DH) population containing 168 progeny lines derived from a cross between two elite Chinese wheat cultivars Huapei 3 x Yumai 57 (Triticum aestivum L.). A genetic map was constructed based on 305 marker loci, consisting of 283 SSR loci and 22 EST-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers in the genome. QTL analyses were performed using a mixed linear model approach. Two main-effect QTLs and two pairs of digenic epistatic effects were detected for heading date on chromosomes 1B, 2B, 5D, 6D, 7A, and 7D at three different environments in 2005 and 2006 cropping seasons. A highly significant QTL with an F-value 148.96, designated as Qhd5D, was observed within the Xbarc320-Xwmc215 interval on chromosome 5DL, accounting for 53.19% of the phenotypic variance and reducing days-to-heading by 2.77 days. The Qhd5D closely links with a PCR marker Xwmc215 with the genetic distance 2.1 cM, which can be used in molecular marker-assisted selection (MAS) in wheat breeding programs. Moreover, the Qhd5D was located on the similar position of well-characterised vernalization sensitivity gene Vrn-D1. We are also spending more efforts to develop near-isogenic lines to finely map the Qhd5D and clone the gene Vrn-D1 through map-based cloning. The Qhd1B with additive effect on heading date has not been reported in previous linkage mapping studies, which might be a photoperiod-sensitive gene homoeologous to the Ppd-H2 gene on chromosome 1B. No main-effect QTLs for heading date were involved in epistatic effects.


Assuntos
Haploidia , Locos de Características Quantitativas , Triticum/genética , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética , Genoma de Planta , Modelos Lineares , Fenótipo
19.
J Integr Plant Biol ; 50(8): 941-50, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18713343

RESUMO

Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level. Herein, we report a new genetic linkage map developed from an F(1)-derived doubled haploid (DH) population of 168 lines, which was generated from the cross between two elite Chinese common wheat (Triticum aestivum L.) varieties, Huapei 3 and Yumai 57. The map contained 305 loci, represented by 283 simple sequence repeat (SSR) and 22 expressed sequence tag (EST)-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers on the map. The chromosomal locations and map positions of 22 new SSR markers were determined, and were found to distribute on 14 linkage groups. Twenty SSR loci showed different chromosomal locations from those reported in other maps. Therefore, this map offers new information on the SSR markers of wheat. This genetic map provides new opportunities to detect and map QTLs controlling agronomically important traits. The unique features of this map are discussed.


Assuntos
Mapeamento Cromossômico , Cruzamentos Genéticos , Haploidia , Triticum/genética , China , Segregação de Cromossomos , Etiquetas de Sequências Expressas , Ligação Genética , Marcadores Genéticos , Repetições Minissatélites/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA