Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sensors (Basel) ; 22(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808431

RESUMO

Building Information Modeling (BIM) has been increasingly used in coordinating the different mechanical, electrical, and plumbing (MEP) services in the construction industries. As the construction industries are slowly adapting to BIM, the use of 2D software may become obsolete in the future as MEP services are technically more complicated to coordinate, due to respective services' codes of practice to follow and limit ceiling height. The 3D MEP designs are easy to visualize before installing the respective MEP services on the construction site to prevent delay in the construction process. The aid of current advanced technology has brought BIM to the next level to reduce manual work through automation. Combining both innovative technology and suitable management methods not only improves the workflow in design coordination, but also decreases conflict on the construction site and lowers labor costs. Therefore, this paper tries to explore possible advance technology in BIM and management strategies that could help MEP services to increase productivity, accuracy, and efficiency with a lower cost of finalizing the design of the building. This will assist the contractors to complete construction works before the targeted schedule and meet the client's expectations.


Assuntos
Indústria da Construção , Engenharia Sanitária , Automação , Humanos , Tecnologia da Informação , Software
2.
Appl Soft Comput ; 131: 109728, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36281433

RESUMO

Public sentiments towards global pandemics are important for public health assessment and disease control. This study develops a modularized deep learning framework to quantify public sentiments towards COVID-19, followed by leveraging the predicted sentiments to model and forecast the daily growth rate of confirmed COVID-19 cases globally, via a proposed G parameter. In the proposed framework, public sentiments are first modeled via a valence dimensional indicator, instead of discrete schemas, and are classified into 4 primary emotional categories: (a) neutral; (b) negative; (c) positive; (d) ambivalent, by using multiple word embedding models and classifiers for text sentiments analyses and classification. The trained model is subsequently applied to analyze large volumes (millions in quantity) of daily Tweets pertaining to COVID-19, ranging from 22 Jan 2020 to 10 May 2020. The results demonstrate that the global community gradually evokes both positive and negative sentiments towards COVID-19 over time compared to the dominant neural emotion at its inception. The predicted time-series sentiments are then leveraged to train a deep neural network (DNN) to model and forecast the G parameter by achieving the lowest possible mean absolute percentage error (MAPE) score of around 17.0% during the model's testing step with the optimal model configuration.

3.
Knowl Based Syst ; 233: 107417, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34690447

RESUMO

In this study, a hybrid deep-learning model termed as ODANN, built upon neural networks (NN) coupled with data assimilation and natural language processing (NLP) features extraction methods, has been constructed to concurrently process daily COVID-19 time-series records and large volumes of COVID-19 related Twitter data, as representative of the global community's aggregated emotional responses towards the current pandemic, to model the growth rate in the number of confirmed COVID-19 cases globally via a proposed G parameter. Overall, there were 3 key components to ODANN's development phase, namely: (i) data hydration and pre-processing were performed on COVID-19 related Twitter data ranging between 23 January 2020 and 10 May 2020, which amounted to over 100 million Tweets written in English language; (ii) multiple NLP features extraction methods were subsequently leveraged to encode the hydrated Twitter data into useful semantic word vectors for training ODANN under an optimal set of hyperparameters; and (iii) historical time-series data of defined characteristics were also assimilated into ODANN's selected hidden layer(s) to model the G parameter daily with a lead-time of 1 day. By far, our experimental results demonstrated that by adopting a rolling time-window size of 5 days, with respect to the number of historical time-series records for assimilating different data features, enabled ODANN to outperform other traditional time-series models and recent studies, in terms of the computed RMSE and MAE scores attained from the model's testing step. Overall, the summarized results from ODANN demonstrated its competitive edge in modelling and forecasting the growth rate in the number of COVID-19 cases globally.

4.
Risk Anal ; 36(2): 278-301, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26224125

RESUMO

Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment.


Assuntos
Teorema de Bayes , Engenharia/métodos , Arquitetura de Instituições de Saúde , Medição de Risco/métodos , Algoritmos , China , Tomada de Decisões , Meio Ambiente , Lógica Fuzzy , Modelos Estatísticos , Probabilidade , Rios , Segurança
5.
Environ Health Perspect ; 131(3): 37009, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36913238

RESUMO

BACKGROUND: Due to many substances in the human exposome, there is a dearth of exposure and toxicity information available to assess potential health risks. Quantification of all trace organics in the biological fluids seems impossible and costly, regardless of the high individual exposure variability. We hypothesized that the blood concentration (CB) of organic pollutants could be predicted via their exposure and chemical properties. Developing a prediction model on the annotation of chemicals in human blood can provide new insight into the distribution and extent of exposures to a wide range of chemicals in humans. OBJECTIVES: Our objective was to develop a machine learning (ML) model to predict blood concentrations (CBs) of chemicals and prioritize chemicals of health concern. METHODS: We curated the CBs of compounds mostly measured at population levels and developed an ML model for chemical CB predictions by considering chemical daily exposure (DE) and exposure pathway indicators (δij), half-lives (t1/2), and volume of distribution (Vd). Three ML models, including random forest (RF), artificial neural network (ANN) and support vector regression (SVR) were compared. The toxicity potential or prioritization of each chemical was represented as a bioanalytical equivalency (BEQ) and its percentage (BEQ%) estimated based on the predicted CB and ToxCast bioactivity data. We also retrieved the top 25 most active chemicals in each assay to further observe changes in the BEQ% after the exclusion of the drugs and endogenous substances. RESULTS: We curated the CBs of 216 compounds primarily measured at population levels. RF outperformed the ANN and SVF models with the root mean square error (RMSE) of 1.66 and 2.07µM, the mean absolute error (MAE) values of 1.28 and 1.56µM, the mean absolute percentage error (MAPE) of 0.29 and 0.23, and R2 of 0.80 and 0.72 across test and testing sets. Subsequently, the human CBs of 7,858 ToxCast chemicals were successfully predicted, ranging from 1.29×10-6 to 1.79×10-2 µM. The predicted CBs were then combined with ToxCast in vitro bioassays to prioritize the ToxCast chemicals across 12 in vitro assays with important toxicological end points. It is interesting that we found the most active compounds to be food additives and pesticides rather than widely monitored environmental pollutants. DISCUSSION: We have shown that the accurate prediction of "internal exposure" from "external exposure" is possible, and this result can be quite useful in the risk prioritization. https://doi.org/10.1289/EHP11305.


Assuntos
Poluentes Ambientais , Expossoma , Praguicidas , Humanos , Algoritmo Florestas Aleatórias , Poluentes Ambientais/toxicidade , Praguicidas/análise
6.
Sustain Cities Soc ; 80: 103772, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35186668

RESUMO

To quantificationally identify the optimal control measures for regulators to best minimize COVID-19's growth (G-rate) and death (D-rate) rates in today's context, this paper develops a top-down multiscale engineering approach which encompasses a series of systematic analyses, namely: (global scale) predictive modelling of G-rate and D-rate due to COVID-19 globally, followed by determining the most effective control factors which can best minimize both parameters over time via explainable Artificial Intelligence (AI) with SHAP (SHapley Additive exPlanations) method; (continental scale) same predictive forecasting of G-rate and D-rate in all continents, followed by performing explainable SHAP analysis to determine the most effective control factors for the respective continents; and (country scale) clustering the different countries (> 150 in total) into 3 main clusters to identify the universal set of effective control measures. By using the historical period between 2 May 2020 and 1 Oct 2021, the average MAPE scores for forecasting G-rate and D-rate are within 10%, or less on average, at the global and continental scales. Systematically, we have quantificationally demonstrated that the top 3 most effective control measures for regulators to best minimize G-rate universally are COVID-CONTACT-TRACING, PUBLIC-GATHERING-RULES, and COVID-STRINGENCY-INDEX, while the control factors relating to D-rate depend on the modelling scenario.

7.
IEEE Trans Cybern ; 52(10): 10364-10378, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33760751

RESUMO

A transparent digital twin (DT) is designed for output control using the belief rule base (BRB), namely, DT-BRB. The goal of the transparent DT-BRB is not only to model the complex relationships between the system inputs and output but also to conduct output control by identifying and optimizing the key parameters in the model inputs. The proposed DT-BRB approach is composed of three major steps. First, BRB is adopted to model the relationships between the inputs and output of the physical system. Second, an analytical procedure is proposed to identify only the key parameters in the system inputs with the highest contribution to the output. Being consistent with the inferencing, integration, and unification procedures of BRB, there are also three parts in the contribution calculation in this step. Finally, the data-driven optimization is performed to control the system output. A practical case study on the Wuhan Metro System is conducted for reducing the building tilt rate (BTR) in tunnel construction. By comparing the results following different standards, the 80% contribution standard is proved to have the highest marginal contribution that identifies only 43.5% parameters as the key parameters but can reduce the BTR by 73.73%. Moreover, it is also observed that the proposed DT-BRB approach is so effective that iterative optimizations are not necessarily needed.

8.
Sustain Cities Soc ; 77: 103508, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34931157

RESUMO

A novel approach combining time series analysis and complex network theory is proposed to deeply explore characteristics of the COVID-19 pandemic in some parts of the United States (US). It merges as a new way to provide a systematic view and complementary information of COVID-19 progression in the US, enabling evidence-based responses towards pandemic intervention and prevention. To begin with, the Principal Component Analysis (PCA) varimax is adopted to fuse observed time-series data about the pandemic evolution in each state across the US. Then, relationships between the pandemic progress of two individual states are measured by different synchrony metrics, which can then be mapped into networks under unique topological characteristics. Lastly, the hidden knowledge in the established networks can be revealed from different perspectives by network structure measurement, community detection, and online random forest, which helps to inform data-driven decisions for battling the pandemic. It has been found that states gathered in the same community by diffusion entropy reducer (DER) are prone to be geographically close and share a similar pattern and tendency of COVID-19 evolution. Social factors regarding the political party, Gross Domestic Product (GDP), and population density are possible to be significantly associated with the two detected communities within a constructed network. Moreover, the cluster-specific predictor based on online random forest and sliding window is proven useful in dynamically capturing and predicting the epidemiological trends for each community, which can reach the highest.

9.
Sustain Cities Soc ; 75: 103231, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34377630

RESUMO

In this study, we develop a deep learning model to forecast the transmission rate of COVID-19 globally, via a proposed G parameter, as a function of fused data features which encompass selected climate conditions, socioeconomic and restrictive governmental factors. A 2-step optimization process is adopted for the model's data fusion component which systematically performs the following: (Step I) determining the optimal climate feature which can achieve good precision score (> 70%) when predicting the spatial classes distribution of the G parameter on a global scale consisting of 251 countries, followed by (Step II) fusing the optimal climate feature with 11 selected socioeconomic-governmental factors to further improve the model's predictive capability. By far, the obtained results from the model's testing step indicate that land surface temperature day (LSTD) has the strongest correlation with the global G parameter over time by achieving an average precision score of 72%. When coupled with relevant socioeconomic-governmental factors, the model's average precision score improves to 77%. At the local scale analysis for selected countries, our proposed model can provide insights into the relationship between the fused data features and the respective local G parameter by achieving an average accuracy score of 79%.

10.
Front Public Health ; 9: 778539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858937

RESUMO

Several recent studies have reported that a few patients had positive SARS-CoV-2 RNA tests after hospital discharge. The high-risk factors associated with these patients remain to be identified. A total of 463 patients with COVID-19 discharged from Leishenshan Hospital in Wuhan, China, between February 8 and March 8, 2020 were initially enrolled, and 351 patients with at least 2 weeks of follow-up were finally included. Seventeen of the 351 discharged patients had positive tests for SARS-CoV-2 RNA. Based on clinical characteristics and mathematical modeling, patients with shorter hospital stays and less oxygen desaturation were at higher risk of SARS-CoV-2 RNA reoccurrence after discharge. Notably, traditional Chinese medicine treatment offered extensive benefits to reduce risk. Particular attention should be paid to those patients with high risk, and traditional Chinese medicine should be advocated.


Assuntos
COVID-19 , Alta do Paciente , Hospitais , Humanos , RNA Viral/genética , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2
11.
Sustain Cities Soc ; 75: 103254, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34414067

RESUMO

To inform data-driven decisions in fighting the global pandemic caused by COVID-19, this research develops a spatiotemporal analysis framework under the combination of an ensemble model (random forest regression) and a multi-objective optimization algorithm (NSGA-II). It has been verified for four Asian countries, including Japan, South Korea, Pakistan, and Nepal. Accordingly, we can gain some valuable experience to better understand the disease evolution, forecast the prevalence of the disease, which can provide sustainable evidence to guide further intervention and management. Random forest with a proper rolling time-window can learn the combined effects of environmental and social factors to accurately predict the daily growth of confirmed cases and daily death rate on a national scale, which is followed by NSGA-II to find a range of Pareto optimal solutions for ensuring the minimization of the infection rate and mortality at the same time. Experimental results demonstrate that the predictive model can alert the local government in advance, allowing the accused time to put forward relevant measures. The temperature in the category of environment and the stringency index belonging to the social factor are identified as the top 2 important features to exert a greater impact on the virus transmission. Moreover, optimal solutions provide references to design the best control strategies towards pandemic containment and prevention that can accommodate the country-specific circumstance, which are possible to decrease the two objectives by more than 95%. In particular, appropriate adjustment of social-related features needs to take priority over others, since it can bring about at least 1.47% average improvement of two objectives compared to environmental factors.

12.
Int J Clin Exp Pathol ; 10(9): 9675-9682, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31966848

RESUMO

BACKGROUND: To explore the genetic diversity and drug resistance status of MTB in Xuzhou, China. METHODS: A total of 325 clinical MTB strains were genotyped by spacer-oligonucleotide typing (spoligotyping) and mycobacterial interspersed repetitive unit variable number of tandem repeats (MIRU-VNTR). Phenotypic resistance was assessed by drug susceptibility testing (DST). RESULT: Based on the spoligotyping method, 325 MTB isolates were classified into 5 known genotypes and 12 unknown genotypes, and the largest branch comprised 268 strains belonging to the Beijing family. Based on the 15-loci VNTR typing method, 325 MTB isolates were divided into 35 clusters and 220 unique patterns. Compared to the low discriminatory power of spoligotyping genotyping (HGDI = 0.3444), 15-loci VNTR genotyping had a significantly higher discriminatory power for all strains (HGDI = 0.9980), particularly for the Beijing family strains (HGDI = 0.9892). When spoligotyping and 15-loci VNTR methods were used together, the discriminatory power increased to 0.9991. The Beijing family strain presented increased risks for developing multi-drug resistance TB (P < 0.05). CONCLUSION: The Beijing family isolates is the most prevalent strains in Xuzhou. Spoligotyping, in combination with 15-loci MIRU-VNTR, is useful for epidemiological analysis of MTB transmission in Xuzhou.

13.
Accid Anal Prev ; 78: 58-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25746166

RESUMO

This paper presents a systematic Structural Equation Modeling (SEM) based approach for Prospective Safety Performance Evaluation (PSPE) on construction sites, with causal relationships and interactions between enablers and the goals of PSPE taken into account. According to a sample of 450 valid questionnaire surveys from 30 Chinese construction enterprises, a SEM model with 26 items included for PSPE in the context of Chinese construction industry is established and then verified through the goodness-of-fit test. Three typical types of construction enterprises, namely the state-owned enterprise, private enterprise and Sino-foreign joint venture, are selected as samples to measure the level of safety performance given the enterprise scale, ownership and business strategy are different. Results provide a full understanding of safety performance practice in the construction industry, and indicate that the level of overall safety performance situation on working sites is rated at least a level of III (Fair) or above. This phenomenon can be explained that the construction industry has gradually matured with the norms, and construction enterprises should improve the level of safety performance as not to be eliminated from the government-led construction industry. The differences existing in the safety performance practice regarding different construction enterprise categories are compared and analyzed according to evaluation results. This research provides insights into cause-effect relationships among safety performance factors and goals, which, in turn, can facilitate the improvement of high safety performance in the construction industry.


Assuntos
Indústria da Construção/organização & administração , Indústria da Construção/estatística & dados numéricos , Saúde Ocupacional/estatística & dados numéricos , Local de Trabalho/organização & administração , Local de Trabalho/estatística & dados numéricos , Adolescente , Adulto , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Estudos de Casos Organizacionais , Avaliação de Programas e Projetos de Saúde , Estudos Prospectivos , Fatores Socioeconômicos , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA