RESUMO
Although DNA N6-methyl-deoxyadenosine (6mA) is abundant in bacteria and protists, its presence and function in mammalian genomes have been less clear. We present Direct-Read 6mA sequencing (DR-6mA-seq), an antibody-independent method, to measure 6mA at base resolution. DR-6mA-seq employs a unique mutation-based strategy to reveal 6mA sites as misincorporation signatures without any chemical or enzymatic modulation of 6mA. We validated DR-6mA-seq through the successful mapping of the well-characterized G(6mA)TC motif in the E. coli DNA. As expected, when applying DR-6mA-seq to mammalian systems, we found that genomic DNA (gDNA) 6mA abundance is generally low in most mammalian tissues and cells; however, we did observe distinct gDNA 6mA sites in mouse testis and glioblastoma cells. DR-6mA-seq provides an enabling tool to detect 6mA at single-base resolution for a comprehensive understanding of DNA 6mA in eukaryotes.
Assuntos
Metilação de DNA , Escherichia coli , Animais , Camundongos , Escherichia coli/genética , Genoma/genética , DNA/metabolismo , Eucariotos/genética , Desoxiadenosinas/genética , Mamíferos/metabolismoRESUMO
2'-O-methylation (Nm) is a prominent RNA modification well known in noncoding RNAs and more recently also found at many mRNA internal sites. However, their function and base-resolution stoichiometry remain underexplored. Here, we investigate the transcriptome-wide effect of internal site Nm on mRNA stability. Combining nanopore sequencing with our developed machine learning method, NanoNm, we identify thousands of Nm sites on mRNAs with a single-base resolution. We observe a positive effect of FBL-mediated Nm modification on mRNA stability and expression level. Elevated FBL expression in cancer cells is associated with increased expression levels for 2'-O-methylated mRNAs of cancer pathways, implying the role of FBL in post-transcriptional regulation. Lastly, we find that FBL-mediated 2'-O-methylation connects to widespread 3' UTR shortening, a mechanism that globally increases RNA stability. Collectively, we demonstrate that FBL-mediated Nm modifications at mRNA internal sites regulate gene expression by enhancing mRNA stability.
Assuntos
Regiões 3' não Traduzidas , Estabilidade de RNA , RNA Mensageiro , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação , Processamento Pós-Transcricional do RNA , Sequenciamento por Nanoporos/métodos , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Aprendizado de MáquinaRESUMO
Central to genotoxic responses is their ability to sense highly specific signals to activate the appropriate repair response. We previously reported that the activation of the ASCC-ALKBH3 repair pathway is exquisitely specific to alkylation damage in human cells. Yet the mechanistic basis for the selectivity of this pathway was not immediately obvious. Here, we demonstrate that RNA but not DNA alkylation is the initiating signal for this process. Aberrantly methylated RNA is sufficient to recruit ASCC, while an RNA dealkylase suppresses ASCC recruitment during chemical alkylation. In turn, recruitment of ASCC during alkylation damage, which is mediated by the E3 ubiquitin ligase RNF113A, suppresses transcription and R-loop formation. We further show that alkylated pre-mRNA is sufficient to activate RNF113A E3 ligase in vitro in a manner dependent on its RNA binding Zn-finger domain. Together, our work identifies an unexpected role for RNA damage in eliciting a specific response to genotoxins.
Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Núcleo Celular/enzimologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/enzimologia , Proteínas Nucleares/metabolismo , Processamento Pós-Transcricional do RNA , RNA Neoplásico/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Núcleo Celular/genética , DNA Helicases/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Metilação , Neoplasias/genética , Proteínas Nucleares/genética , Estruturas R-Loop , RNA Neoplásico/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Transcrição Gênica , UbiquitinaçãoRESUMO
N6-Methyldeoxyadenosine (6mA) has recently been shown to exist and play regulatory roles in eukaryotic genomic DNA (gDNA). However, the biological functions of 6mA in mammals have yet to be adequately explored, largely due to its low abundance in most mammalian genomes. Here, we report that mammalian mitochondrial DNA (mtDNA) is enriched for 6mA. The level of 6mA in HepG2 mtDNA is at least 1,300-fold higher than that in gDNA under normal growth conditions, corresponding to approximately four 6mA modifications on each mtDNA molecule. METTL4, a putative mammalian methyltransferase, can mediate mtDNA 6mA methylation, which contributes to attenuated mtDNA transcription and a reduced mtDNA copy number. Mechanistically, the presence of 6mA could repress DNA binding and bending by mitochondrial transcription factor (TFAM). Under hypoxia, the 6mA level in mtDNA could be further elevated, suggesting regulatory roles for 6mA in mitochondrial stress response. Our study reveals DNA 6mA as a regulatory mark in mammalian mtDNA.
Assuntos
DNA Mitocondrial/metabolismo , Desoxiadenosinas/metabolismo , Metiltransferases/metabolismo , Animais , Metilação de DNA , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxiadenosinas/genética , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Hipóxia/genética , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
N7-methylguanosine (m7G) is a positively charged, essential modification at the 5' cap of eukaryotic mRNA, regulating mRNA export, translation, and splicing. m7G also occurs internally within tRNA and rRNA, but its existence and distribution within eukaryotic mRNA remain to be investigated. Here, we show the presence of internal m7G sites within mammalian mRNA. We then performed transcriptome-wide profiling of internal m7G methylome using m7G-MeRIP sequencing (MeRIP-seq). To map this modification at base resolution, we developed a chemical-assisted sequencing approach that selectively converts internal m7G sites into abasic sites, inducing misincorporation at these sites during reverse transcription. This base-resolution m7G-seq enabled transcriptome-wide mapping of m7G in human tRNA and mRNA, revealing distribution features of the internal m7G methylome in human cells. We also identified METTL1 as a methyltransferase that installs a subset of m7G within mRNA and showed that internal m7G methylation could affect mRNA translation.
Assuntos
Mapeamento Cromossômico/métodos , Guanosina/análogos & derivados , Metiltransferases/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Transcriptoma , Animais , Sequência de Bases , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Guanosina/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metilação , Metiltransferases/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Transcrição ReversaRESUMO
N 1-methyl adenosine (m1A) is a widespread RNA modification present in tRNA, rRNA, and mRNA. m1A modification sites in tRNAs are evolutionarily conserved and its formation on tRNA is catalyzed by methyltransferase TRMT61A and TRMT6 complex. m1A promotes translation initiation and elongation. Due to its positive charge under physiological conditions, m1A can notably modulate RNA structure. It also blocks Watson-Crick-Franklin base-pairing and causes mutation and truncation during reverse transcription. Several misincorporation-based high-throughput sequencing methods have been developed to sequence m1A. In this study, we introduce a reduction-based m1A sequencing (red-m1A-seq). We report that NaBH4 reduction of m1A can improve the mutation and readthrough rates using commercially available RT enzymes to give a better positive signature, while alkaline-catalyzed Dimroth rearrangement can efficiently convert m1A to m6A to provide good controls, allowing the detection of m1A with higher sensitivity and accuracy. We applied red-m1A-seq to sequence human small RNA, and we not only detected all the previously reported tRNA m1A sites, but also new m1A sites in mt-tRNAAsn-GTT and 5.8S rRNA.
Assuntos
RNA de Transferência , RNA , Humanos , Metilação , RNA de Transferência/química , RNA/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/genéticaRESUMO
ConspectusRNA molecules are not merely a combination of four bases of A, C, G, and U. Chemical modifications occur in almost all RNA species and play diverse roles in gene expression regulation. The abundant cellular RNAs, such as ribosomal RNA (rRNA) and transfer RNA (tRNA), are known to have the highest density of RNA modifications, which exert critical functions in rRNA and tRNA biogenesis, stability, and subsequent translation. In recent years, modifications on low-abundance RNA species in mammalian cells, such as messenger RNA (mRNA), regulatory noncoding RNA (ncRNA), and chromatin-associated RNA (caRNA), have been shown to contain multiple different chemical modifications with functional significance.As the most abundant mRNA modification in mammals, N6-methyladenosine (m6A) affects nearly every stage of mRNA processing and metabolism, with the antibody-based m6A-MeRIP-seq (methylated RNA immunoprecipitation sequencing) followed by high-throughput sequencing widely employed in mapping m6A distribution transcriptome-wide in diverse biological systems. In addition to m6A, other chemical modifications such as pseudouridine (Ψ), 2'-O-methylation (Nm), 5-methylcytidine (m5C), internal N7-methylguanosine (m7G), N1-methyladenosine (m1A), N4-acetylcytidine (ac4C), etc. also exist in polyA-tailed RNA in mammalian cells, requiring effective mapping approaches for whole-transcriptome profiling of these non-m6A mRNA modifications. Like m6A, the antibody-based enrichment followed by sequencing has been the primary method to study distributions of these modifications. Methods to more quantitatively map these modifications would dramatically improve our understanding of distributions and modification density of these chemical marks on RNA, thereby bettering informing functional implications. In this Account, aimed at both single-base resolution and modification fraction quantification, we summarize our recent advances in developing a series of chemistry- or biochemistry-based methods to quantitatively map RNA modifications, including m6A, Ψ, m5C, m1A, 2'-O-methylation (Nm), and internal m7G, in mammalian mRNA at base resolution. These new methods, including m6A-SAC-seq, eTAM-seq, BID-seq, UBS-seq, DAMM-seq, m1A-quant-seq, Nm-Mut-seq, and m7G-quant-seq, promise to conduct base-resolution mapping of most major mRNA modifications with low RNA input and uncover dynamic changes in modification stoichiometry during biological and physiological processes, facilitating future investigations on these RNA modifications in regulating cellular gene expression and as potential biomarkers for clinical diagnosis and prognosis. These quantitative sequencing methods allow the mapping of most mRNA modifications with limited input sample requirements. The same modifications on diverse RNA species, such as caRNA, ncRNA, nuclear nascent RNA, mitochondrial RNA, cell-free RNA (cfRNA), etc., could be sequenced using the same methods.
Assuntos
RNA de Transferência , Transcriptoma , Animais , Metilação , Sequência de Bases , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA/metabolismo , Mamíferos/genética , Mamíferos/metabolismoRESUMO
5-methylcytosine (m5C) is one of the most prevalent modifications of RNA, playing important roles in RNA metabolism, nuclear export, and translation. However, the potential role of RNA m5C methylation in innate immunity remains elusive. Here, we show that depletion of NSUN2, an m5C methyltransferase, significantly inhibits the replication and gene expression of a wide range of RNA and DNA viruses. Notably, we found that this antiviral effect is largely driven by an enhanced type I interferon (IFN) response. The antiviral signaling pathway is dependent on the cytosolic RNA sensor RIG-I but not MDA5. Transcriptome-wide mapping of m5C following NSUN2 depletion in human A549 cells revealed a marked reduction in the m5C methylation of several abundant noncoding RNAs (ncRNAs). However, m5C methylation of viral RNA was not noticeably altered by NSUN2 depletion. In NSUN2-depleted cells, the host RNA polymerase (Pol) III transcribed ncRNAs, in particular RPPH1 and 7SL RNAs, were substantially up-regulated, leading to an increase of unshielded 7SL RNA in cytoplasm, which served as a direct ligand for the RIG-I-mediated IFN response. In NSUN2-depleted cells, inhibition of Pol III transcription or silencing of RPPH1 and 7SL RNA dampened IFN signaling, partially rescuing viral replication and gene expression. Finally, depletion of NSUN2 in an ex vivo human lung model and a mouse model inhibits viral replication and reduces pathogenesis, which is accompanied by enhanced type I IFN responses. Collectively, our data demonstrate that RNA m5C methylation controls antiviral innate immunity through modulating the m5C methylome of ncRNAs and their expression.
Assuntos
Interferon Tipo I , Viroses , 5-Metilcitosina/metabolismo , Animais , Antivirais , Proteína DEAD-box 58/metabolismo , Humanos , Imunidade Inata/genética , Interferon Tipo I/genética , Interferons , Ligantes , Camundongos , RNA Polimerase III , Replicação Viral/genéticaRESUMO
Reversible lysine-63 (K63) polyubiquitination regulates proinflammatory signaling in vascular smooth muscle cells (SMCs) and plays an integral role in atherosclerosis. Ubiquitin-specific peptidase 20 (USP20) reduces NFκB activation triggered by proinflammatory stimuli, and USP20 activity attenuates atherosclerosis in mice. The association of USP20 with its substrates triggers deubiquitinase activity; this association is regulated by phosphorylation of USP20 on Ser334 (mouse) or Ser333 (human). USP20 Ser333 phosphorylation was greater in SMCs of atherosclerotic segments of human arteries as compared with nonatherosclerotic segments. To determine whether USP20 Ser334 phosphorylation regulates proinflammatory signaling, we created USP20-S334A mice using CRISPR/Cas9-mediated gene editing. USP20-S334A mice developed â¼50% less neointimal hyperplasia than congenic WT mice after carotid endothelial denudation. WT carotid SMCs showed substantial phosphorylation of USP20 Ser334, and WT carotids demonstrated greater NFκB activation, VCAM-1 expression, and SMC proliferation than USP20-S334A carotids. Concordantly, USP20-S334A primary SMCs in vitro proliferated and migrated less than WT SMCs in response to IL-1ß. An active site ubiquitin probe bound to USP20-S334A and USP20-WT equivalently, but USP20-S334A associated more avidly with TRAF6 than USP20-WT. IL-1ß induced less K63-linked polyubiquitination of TRAF6 and less downstream NFκB activity in USP20-S334A than in WT SMCs. Using in vitro phosphorylation with purified IRAK1 and siRNA-mediated gene silencing of IRAK1 in SMCs, we identified IRAK1 as a novel kinase for IL-1ß-induced USP20 Ser334 phosphorylation. Our findings reveal novel mechanisms regulating IL-1ß-induced proinflammatory signaling: by phosphorylating USP20 Ser334, IRAK1 diminishes the association of USP20 with TRAF6 and thus augments NFκB activation, SMC inflammation, and neointimal hyperplasia.
Assuntos
Aterosclerose , Inflamação , Quinases Associadas a Receptores de Interleucina-1 , Interleucina-1beta , Músculo Liso Vascular , Miócitos de Músculo Liso , Fosfosserina , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Hiperplasia/metabolismo , Hiperplasia/patologia , Inflamação/metabolismo , Inflamação/patologia , Quinases Associadas a Receptores de Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fosforilação , Fosfosserina/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo , NF-kappa B/metabolismo , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Interleucina-1beta/metabolismo , UbiquitinaçãoRESUMO
III-nitride wide bandgap semiconductors are promising materials for modern optoelectronics and electronics. Their application has progressed greatly thanks to the continuous quality improvements of heteroepitaxial films grown on large-lattice-mismatched foreign substrates. But compared with bulk single crystals, there is still tremendous room for the further improvement of the material quality. Here we show a paradigm to achieve high-quality III-nitride heteroepitaxial films by the controllable discretization and coalescence of columns. By adopting nano-patterned AlN/sapphire templates with regular hexagonal holes, discrete AlN columns coalesce with uniform out-of-plane and in-plane orientations guaranteed by sapphire nitridation pretreatment and the ordered lateral growth of cleavage facets, which efficiently suppresses the regeneration of threading dislocations during coalescence. The density of dislocation etch pits in the AlN heteroepitaxial film reaches 3.3 × 104 cm-2, close to the present available AlN bulk single crystals. This study facilitates the growth of bulk-class quality III-nitride films featuring low cost and scalability.
Assuntos
Óxido de Alumínio , Eletrônica , Semicondutores , SoftwareRESUMO
The strong interaction between light and matter is one of the current research hotspots in the field of nanophotonics, and provides a suitable platform for fundamental physics research such as on nanolasers, high-precision sensing in biology, quantum communication and quantum computing. In this study, double Rabi splitting was achieved in a composite structure monolayer MoS2 and a single Ag@Au hollow nanocube (HNC) in room temperature mainly due to the two excitons in monolayer MoS2. Moreover, the tuning of the plasmon resonance peak was realized in the scattering spectrum by adjusting the thickness of the shell to ensure it matches the energy of the two excitons. Two distinct anticrossings are observed at both excitons resonances, and large double Rabi splittings (90 meV and 120 meV) are obtained successfully. The finite-difference time domain (FDTD) method was also used to simulate the scattering spectra of the nanostructures, and the simulation results were in good agreement with the experimental results. Additionally, the local electromagnetic field ability of the Ag@Au hollow HNC was proved to be stronger by calculating and comparing the mode volume of different nanoparticles. Our findings provides a good platform for the realization of strong multi-mode coupling and open up a new way to construct nanoscale photonic devices.
RESUMO
Protein disulphide isomerase (PDI) possesses disulphide isomerase, oxidoreductase and molecular chaperone activities, and is involved in regulating various physiological processes. However, there are few studies on the function in insect diapause. In this study, we cloned one novel member PDI family (TMX3, thioredoxin-related transmembrane protein 3) in Arma chinensis. The AcTMX3 encodes 426 amino acids that contains a predicted N-terminal signal sequence, a thioredoxin-like domain with the CXXC active site and a potential transmembrane region, which are typical sequence features of TMX3. RT-qPCR results showed that AcTMX3 was mainly expressed in the head under non-diapause conditions, while AcTMX3 was highly expressed in the fat body (central metabolic organ) under diapause conditions. Moreover, temporal expression profile showed that compared with non-diapause conditions, diapause conditions significantly induced AcTMX3 expression, and the expression of AcTMX3 was enhanced at 15°C. Silencing AcTMX3 in A. chinensis significantly inhibited the expression of antioxidant genes (AcTrx2 and AcTrx-like), increased the content of H2O2 and ascorbate and reduced the survival rate of A. chinensis under diapause conditions. Our results suggested that AcTMX3 played an important role in the resistance of A. chinensis to oxidative stress under diapause conditions.
RESUMO
In insects, vitellogenin (Vg) is generally viewed as a female-specific protein. Its primary function is to supply nutrition to developing embryos. Here, we reported Vg from the male adults of a natural predator, Chrysopa pallens. The male Vg was depleted by RNAi. Mating with Vg-deficient male downregulated female Vg expression, suppressed ovarian development and decreased reproductive output. Whole-organism transcriptome analysis after male Vg knockdown showed no differential expression of the known spermatogenesis-related regulators and seminal fluid protein genes, but a sharp downregulation of an unknown gene, which encodes a testis-enriched big protein (Vcsoo). Separate knockdown of male Vg and Vcsoo disturbed the assembly of spermatid cytoplasmic organelles in males and suppressed the expansion of ovary germarium in mated females. These results demonstrated that C. pallens male Vg signals through the downstream Vcsoo and regulates male and female reproduction.
Assuntos
Testículo , Vitelogeninas , Feminino , Masculino , Animais , Vitelogeninas/genética , Vitelogeninas/metabolismo , Insetos/genética , Reprodução , GametogêneseRESUMO
Ferroptosis is an iron-dependent form of non-apoptotic cell death implicated in liver, brain, kidney, and heart pathology. How ferroptosis is regulated remains poorly understood. Here, we show that PPARα suppresses ferroptosis by promoting the expression of glutathione peroxidase 4 (Gpx4) and by inhibiting the expression of the plasma iron carrier TRF. PPARα directly induces Gpx4 expression by binding to a PPRE element within intron 3. PPARα knockout mice develop more severe iron accumulation and ferroptosis in the liver when fed a high-iron diet than wild-type mice. Ferrous iron (Fe2+ ) triggers ferroptosis via Fenton reactions and ROS accumulation. We further find that a rhodamine-based "turn-on" fluorescent probe(probe1) is suitable for the in vivo detection of Fe2+ . Probe1 displays high selectivity towards Fe2+ , and exhibits a stable response for Fe2+ with a concentration of 20 µM in tissue. Our data thus show that PPARα activation alleviates iron overload-induced ferroptosis in mouse livers through Gpx4 and TRF, suggesting that PPARα may be a promising therapeutic target for drug discovery in ferroptosis-related tissue injuries. Moreover, we identified a fluorescent probe that specifically labels ferrous ions and can be used to monitor Fe2+ in vivo.
Assuntos
Ferroptose , Sobrecarga de Ferro , PPAR alfa , Animais , Ferroptose/genética , Corantes Fluorescentes , Ferro/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/patologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , PPAR alfa/genética , Fosfolipídeo Hidroperóxido Glutationa PeroxidaseRESUMO
Irinotecan (CPT-11) is a commonly prescribed chemotherapeutic for the treatment of colon cancer. Unfortunately, acute and delayed diarrhea are prominent side effects of CPT-11 use, and this limits its therapeutic potential. The curative effect of Huangqin decoction (HQD) on chemotherapy-induced diarrhea has been proven. This study investigated the efficacy of the components of HQD (baicalein, baicalin, and paeoniflorin) on CPT-11-induced diarrhea and their underlying mechanisms. Baicalein was found to be the most effective component in improving CPT-11-induced enterotoxicity by intestinal permeability test, ELISA, fluorescence co-localization, and IHC. The combination of baicalin, baicalin and paeoniflorin can obtain similar therapeutic effect to that of HQD. Mendelian randomization analysis, 16 s rRNA sequencing, and fluorescence imaging revealed that baicalein and baicalin significantly inhibited ß-glucuronidase (ß-GUS) activity. Bacterial abundance analysis and scanning electron microscopy showed that baicalein inhibited the proliferation of Escherichia coli by destroying its cell wall. The molecular dynamics and site-directed mutagenesis results revealed the structural basis for the inhibition of ß-GUS by baicalein and baicalin. The results above provide a new idea for the development of drug therapy for adjuvant chemotherapy and theoretical guidance for the optimization of molecular structure targeting ß-GUS.
Assuntos
Diarreia , Medicamentos de Ervas Chinesas , Escherichia coli , Glucuronidase , Irinotecano , Escherichia coli/efeitos dos fármacos , Irinotecano/farmacologia , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Animais , Medicamentos de Ervas Chinesas/farmacologia , Glucuronidase/metabolismo , Flavanonas/farmacologia , Humanos , Flavonoides/farmacologia , MasculinoRESUMO
Polycyclic aromatic hydrocarbons (PAHs) are significant petroleum pollutants that have long-term impacts on human health and ecosystems. However, assessing their toxicity presents challenges due to factors such as cost, time, and the need for comprehensive multi-component analysis methods. In this study, we utilized network toxicity models, enrichment analysis, and molecular docking to analyze the toxicity mechanisms of PAHs at different levels: compounds, target genes, pathways, and species. Additionally, we used the maximum acceptable concentration (MAC) value and risk quotient (RQ) as an indicator for the potential ecological risk assessment of PAHs. The results showed that higher molecular weight PAHs had increased lipophilicity and higher toxicity. Benzo[a]pyrene and Fluoranthene were identified as core compounds, which increased the risk of cancer by affecting core target genes such as CCND1 in the human body, thereby influencing signal transduction and the immune system. In terms of biological species, PAHs had a greater toxic impact on aquatic organisms compared to terrestrial organisms. High molecular weight PAHs had lower effective concentrations on biological species, and the ecological risk was higher in the Yellow River Delta region. This research highlights the potential application of network toxicity models in understanding the toxicity mechanisms and species toxicity of PAHs and provides valuable insights for monitoring, prevention, and ecological risk assessment of these pollutants.
Assuntos
Poluentes Ambientais , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Ecossistema , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Petróleo/toxicidade , Petróleo/análise , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Medição de Risco , China , Sedimentos Geológicos/análiseRESUMO
Phosphate concentrations in eutrophic surface waters are usually low, and efficient removal of low concentration phosphate remains a challenge. In this study, Ca-doped LaMnO3 synthesized at doping ratios, designated as CaxLa1-xMnO3 (x = 0, 0.2, 0.4, 0.7), were compared. It was found that, the adsorption capacity of Ca0.4La0.6MnO3 material reached 63.01 mg/g at pH = 5, increased by 63.6% over the undoped LaMnO3 perovskite. For long-term adsorption, Ca0.4La0.6MnO3 could constantly adsorb phosphate to avoid phosphate accumulation (<0.05 mg/L). This proves that Ca0.4La0.6MnO3 has the ability to control dynamic water eutrophication. Characterization and density functional theory results confirmed that CaxLa1-xMnO3 can increase the content of mesopores and oxygen vacancies, providing additional active sites. This reduces the adsorption energy of the La site, promotes electron transfer, and increases its affinity. It provides a new method for removing low-concentration phosphates.
Assuntos
Fosfatos , Poluentes Químicos da Água , Adsorção , Fosfatos/química , Água , Concentração de Íons de Hidrogênio , CinéticaRESUMO
Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.
RESUMO
As a significant accompanying phenomenon of surface-enhanced Raman scattering (SERS), the addition of foreign molecules to colloidal gold or silver nanoparticles results in a new abnormal optical absorption (AOA) band, which usually appears in the long-wavelength region. The assignment of this AOA band has long been debated as an important issue that is desired to be addressed in the SERS field, which is crucial for a clear understanding of the SERS enhancement mechanism and beneficial to surface plasmonics. In this study, both the calculated and measured optical absorptions of gold nanoparticle monomers and dimers as well as their interactions with adsorbed molecules, showed that the AOA band in the long-wavelength region which was assigned to the characteristic longitudinal localized surface plasmon resonance (LSPR) effect of gold nanoparticle chain aggregates in conventional SERS electromagnetic theory, should be attributed to the charge-transfer resonance absorption from gold nanoparticles to adsorbed molecules. This was further confirmed by the corresponding SERS effects. As the excitation wavelength at 785 nm was resonant with the broad AOA band centered at 750 nm, the SERS peaks of the adsorbed pyridine molecules could be dramatically enhanced due to the charge-transfer resonance effect. In contrast, under an excitation wavelength of 532 nm, the SERS peaks appeared very weak, although the excitation wavelength was resonant with the LSPR absorption band of the individual gold nanoparticles.
RESUMO
Acute kidney injury (AKI) refers to a group of common clinical syndromes characterized by acute renal dysfunction, which may lead to chronic kidney disease (CKD), and this process is called the AKI-CKD transition. The transcriptional coactivator YAP can promote the AKI-CKD transition by regulating the expression of profibrotic factors, and 14-3-3 protein zeta (14-3-3ζ), an important regulatory protein of YAP, may prevent the AKI-CKD transition. We established an AKI-CKD model in mice by unilateral renal ischemia-reperfusion injury and overexpressed 14-3-3ζ in mice using a fluid dynamics-based gene transfection technique. We also overexpressed and knocked down 14-3-3ζ in vitro. In AKI-CKD model mice, 14-3-3ζ expression was significantly increased at the AKI stage. During the development of chronic disease, the expression of 14-3-3ζ tended to decrease, whereas active YAP was consistently overexpressed. In vitro, we found that 14-3-3ζ can combine with YAP, promote the phosphorylation of YAP, inhibit YAP nuclear translocation, and reduce the expression of fibrosis-related proteins. In an in vivo intervention experiment, we found that the overexpression of 14-3-3ζ slowed the process of renal fibrosis in a mouse model of AKI-CKD. These findings suggest that 14-3-3ζ can affect the expression of fibrosis-related proteins by regulating YAP, inhibit the maladaptive repair of renal tubular epithelial cells, and prevent the AKI-CKD transition.