Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Radiology ; 266(1): 246-55, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23143024

RESUMO

PURPOSE: To assess the accuracy and initial clinical use of a software tool that automatically maps and records values of skin dose, including peak skin dose (PSD), administered to patients undergoing fluoroscopically guided interventional procedures. MATERIALS AND METHODS: In this retrospective study, the institutional review board determined that this HIPAA-compliant study met the criteria as a quality assurance investigation. Informed consent was waived. After the initial validation and accuracy tests, distributed skin dose and PSD estimates were obtained for fluoroscopically guided interventional procedures performed in the radiology, cardiology, and gastroenterology practice areas between January and October 2011. A total of 605 procedures were performed in 520 patients (64% men; age range, 20-95 years). The accuracy of a skin dose tool to estimate patient dose distribution was verified with phantom studies by using an external dosimeter and direct exposure film. PSD distribution, PSD according to procedure type, and PSD for individual physician operators were assessed. RESULTS: Calculated PSD values agreed within ±9% of that measured by using film dosimetry under the condition of matched-phantom geometry. The area receiving the highest dose (greater than 95% of peak) agreed within ±17%. Of 605 patient procedures, 15 demonstrated PSD greater than 2 Gy, with a maximum PSD of 5.6 Gy. CONCLUSION: Knowledge of the patient skin dose can help direct treatment of patients who were administered relatively high skin dose and may be used to plan future procedures. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112295/-/DC1.


Assuntos
Algoritmos , Carga Corporal (Radioterapia) , Doses de Radiação , Radiografia Intervencionista/métodos , Radiometria/métodos , Fenômenos Fisiológicos da Pele , Software , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Radiographics ; 31(2): 603-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21257928

RESUMO

Acute awareness of the costs associated with medical imaging equipment is an ever-present aspect of the current healthcare debate. However, the monitoring of productivity associated with expensive imaging devices is likely to be labor intensive, relies on summary statistics, and lacks accepted and standardized benchmarks of efficiency. In the context of the general Six Sigma DMAIC (design, measure, analyze, improve, and control) process, a World Wide Web-based productivity tool called the Imaging Exam Time Monitor was developed to accurately and remotely monitor imaging efficiency with use of Digital Imaging and Communications in Medicine (DICOM) combined with a picture archiving and communication system. Five device efficiency metrics-examination duration, table utilization, interpatient time, appointment interval time, and interseries time-were derived from DICOM values. These metrics allow the standardized measurement of productivity, to facilitate the comparative evaluation of imaging equipment use and ongoing efforts to improve efficiency. A relational database was constructed to store patient imaging data, along with device- and examination-related data. The database provides full access to ad hoc queries and can automatically generate detailed reports for administrative and business use, thereby allowing staff to monitor data for trends and to better identify possible changes that could lead to improved productivity and reduced costs in association with imaging services. © RSNA, 2011.


Assuntos
Algoritmos , Diagnóstico por Imagem/instrumentação , Eficiência , Análise de Falha de Equipamento/métodos , Informática Médica/métodos , Avaliação da Tecnologia Biomédica/métodos , Estados Unidos
3.
J Digit Imaging ; 24(4): 626-39, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20706859

RESUMO

This software tool locates and computes the intensity of radiation skin dose resulting from fluoroscopically guided interventional procedures. It is comprised of multiple modules. Using standardized body specific geometric values, a software module defines a set of male and female patients arbitarily positioned on a fluoroscopy table. Simulated X-ray angiographic (XA) equipment includes XRII and digital detectors with or without bi-plane configurations and left and right facing tables. Skin dose estimates are localized by computing the exposure to each 0.01 × 0.01 m(2) on the surface of a patient irradiated by the X-ray beam. Digital Imaging and Communications in Medicine (DICOM) Structured Report Dose data sent to a modular dosimetry database automatically extracts the 11 XA tags necessary for peak skin dose computation. Skin dose calculation software uses these tags (gantry angles, air kerma at the patient entrance reference point, etc.) and applies appropriate corrections of exposure and beam location based on each irradiation event (fluoroscopy and acquistions). A physicist screen records the initial validation of the accuracy, patient and equipment geometry, DICOM compliance, exposure output calibration, backscatter factor, and table and pad attenuation once per system. A technologist screen specifies patient positioning, patient height and weight, and physician user. Peak skin dose is computed and localized; additionally, fluoroscopy duration and kerma area product values are electronically recorded and sent to the XA database. This approach fully addresses current limitations in meeting accreditation criteria, eliminates the need for paper logs at a XA console, and provides a method where automated ALARA montoring is possible including email and pager alerts.


Assuntos
Fluoroscopia , Doses de Radiação , Radiografia Intervencionista , Radiometria/métodos , Pele/efeitos da radiação , Automação , Feminino , Humanos , Armazenamento e Recuperação da Informação/métodos , Masculino , Posicionamento do Paciente , Imagens de Fantasmas , Proteção Radiológica/métodos , Sistemas de Informação em Radiologia , Software
4.
J Digit Imaging ; 24(2): 223-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20824303

RESUMO

The U.S. National Press has brought to full public discussion concerns regarding the use of medical radiation, specifically x-ray computed tomography (CT), in diagnosis. A need exists for developing methods whereby assurance is given that all diagnostic medical radiation use is properly prescribed, and all patients' radiation exposure is monitored. The "DICOM Index Tracker©" (DIT) transparently captures desired digital imaging and communications in medicine (DICOM) tags from CT, nuclear imaging equipment, and other DICOM devices across an enterprise. Its initial use is recording, monitoring, and providing automatic alerts to medical professionals of excursions beyond internally determined trigger action levels of radiation. A flexible knowledge base, aware of equipment in use, enables automatic alerts to system administrators of newly identified equipment models or software versions so that DIT can be adapted to the new equipment or software. A dosimetry module accepts mammography breast organ dose, skin air kerma values from XA modalities, exposure indices from computed radiography, etc. upon receipt. The American Association of Physicists in Medicine recommended a methodology for effective dose calculations which are performed with CT units having DICOM structured dose reports. Web interface reporting is provided for accessing the database in real-time. DIT is DICOM-compliant and, thus, is standardized for international comparisons. Automatic alerts currently in use include: email, cell phone text message, and internal pager text messaging. This system extends the utility of DICOM for standardizing the capturing and computing of radiation dose as well as other quality measures.


Assuntos
Mineração de Dados/métodos , Bases de Dados Factuais , Garantia da Qualidade dos Cuidados de Saúde/métodos , Doses de Radiação , Sistemas de Informação em Radiologia , Tomografia Computadorizada por Raios X/normas , Sistemas de Gerenciamento de Base de Dados , Humanos , Armazenamento e Recuperação da Informação/métodos , Informática Médica/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA