Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(22)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035175

RESUMO

Microlasers in near-degenerate supermodes lay the cornerstone for studies of non-Hermitian physics, novel light sources, and advanced sensors. Recent experiments of the stimulated scattering in supermode microcavities reported beating phenomena, interpreted as dual-mode lasing, which, however, contradicts their single-mode nature due to the clamped pump field. Here, we investigate the supermode Raman laser in a whispering-gallery microcavity and demonstrate experimentally its single-mode lasing behavior with a side-mode suppression ratio (SMSR) up to 37 dB, despite the emergence of near-degenerate supermodes by the backscattering between counterpropagating waves. Moreover, the beating signal is recognized as the transient interference during the switching process between the two supermode lasers. Self-injection is exploited to manipulate the lasing supermodes, where the SMSR is further improved by 15 dB and the laser linewidth is below 100 Hz.

2.
Nano Lett ; 23(7): 3048-3053, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36946699

RESUMO

Liquid-crystal microcavity lasers have attracted considerable attention because of their extraordinary tunability and sensitive response to external stimuli, and because they operate generally within a specific phase. Here, we demonstrate a liquid-crystal microcavity laser operated in the phase transition in which the reorientation of liquid-crystal molecules occurs from aligned to disordered states. A significant wavelength shift of the microlaser is observed, resulting from the dramatic changes in the refractive index of liquid-crystal microdroplets during the phase transition. This phase-transition microcavity laser is then exploited for sensitive thermal sensing, enabling a two-order-of-magnitude enhancement in sensitivity compared with the nematic-phase microlaser operated far from the transition point. Experimentally, we demonstrate an exceptional sensitivity of -40 nm/K and an ultrahigh resolution of 320 µK. The phase-transition microcavity laser features compactness, softness, and tunability, showing great potential for high-performance sensors, optical modulators, and soft matter photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA