Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Biol Chem ; 300(8): 107493, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925330

RESUMO

Diabetic nephropathy (DN) is one of the most important comorbidities for diabetic patients, which is the main factor leading to end-stage renal disease. Heparin analogs can delay the progression of DN, but the mechanism is not fully understood. In this study, we found that low molecular weight heparin therapy significantly upregulated some downstream proteins of the peroxisome proliferator-activated receptor (PPAR) signaling pathway by label-free quantification of the mouse kidney proteome. Through cell model verification, low molecular weight heparin can protect the heparan sulfate of renal tubular epithelial cells from being degraded by heparanase that is highly expressed in a high-glucose environment, enhance the endocytic recruitment of fatty acid-binding protein 1, a coactivator of the PPAR pathway, and then regulate the activation level of intracellular PPAR. In addition, we have elucidated for the first time the molecular mechanism of heparan sulfate and fatty acid-binding protein 1 interaction. These findings provide new insights into understanding the role of heparin in the pathogenesis of DN and developing corresponding treatments.


Assuntos
Nefropatias Diabéticas , Glicocálix , Heparina de Baixo Peso Molecular , Heparitina Sulfato , Transdução de Sinais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/tratamento farmacológico , Animais , Camundongos , Heparina de Baixo Peso Molecular/farmacologia , Heparitina Sulfato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glicocálix/metabolismo , Glicocálix/efeitos dos fármacos , Glucuronidase/metabolismo , Glucuronidase/genética , Humanos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Progressão da Doença
2.
Circ Res ; 131(6): 492-506, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35950704

RESUMO

BACKGROUND: Preeclampsia is one of the leading causes of maternal and perinatal morbidity and is characterized by hypertension, inflammation, and placental dysfunction. Gut microbiota plays key roles in inflammation and hypertension. However, its roles and mechanisms in preeclampsia have not been fully elucidated. METHODS: 16S rRNA gene sequencing and targeted metabolomics were conducted on stool samples from 92 preeclamptic patients and 86 normal late-pregnant women. Then, fecal microbiota transplantation and in vitro and in vivo functional experiments were performed to explore the roles and mechanisms of gut microbiota in preeclampsia development. RESULTS: We revealed the gut microbiota dysbiosis in preeclamptic patients, including significant reductions in short-chain fatty acid-producing bacteria and short-chain fatty acids. The gut microbiota of preeclamptic patients significantly exacerbated pathologies and symptoms of preeclamptic rats, whereas the gut microbiota of healthy pregnant women had significant protective effects. Akkermansia muciniphila, propionate, or butyrate significantly alleviated the symptoms of preeclamptic rats. Mechanistically, they significantly promoted autophagy and M2 polarization of macrophages in placental bed, thereby suppressing inflammation. Propionate also significantly promoted trophoblast invasion, thereby improved spiral arterial remodeling. Additionally, we identified a marker set consisting of Akkermansia, Oscillibacter, and short-chain fatty acids that could accurately diagnose preeclampsia. CONCLUSIONS: Our study revealed that gut microbiota dysbiosis is an important etiology of preeclampsia. Gut microbiota and their active metabolites have great potential for the treatment and diagnosis of preeclampsia. Our findings enrich the gut-placenta axis theory and contribute to the development of microecological products for preeclampsia.


Assuntos
Hipertensão , Pré-Eclâmpsia , Animais , Disbiose/microbiologia , Ácidos Graxos Voláteis/metabolismo , Feminino , Humanos , Inflamação/complicações , Macrófagos/metabolismo , Placenta/metabolismo , Gravidez , Propionatos , RNA Ribossômico 16S/genética , Ratos , Trofoblastos/metabolismo
3.
Circ Res ; 126(7): 839-853, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32078445

RESUMO

RATIONALE: High-salt diet is one of the most important risk factors for hypertension. Intestinal flora has been reported to be associated with high salt-induced hypertension (hSIH). However, the detailed roles of intestinal flora in hSIH pathogenesis have not yet been fully elucidated. OBJECTIVE: To reveal the roles and mechanisms of intestinal flora in hSIH development. METHODS AND RESULTS: The abovementioned issues were investigated using various techniques including 16S rRNA gene sequencing, untargeted metabolomics, selective bacterial culture, and fecal microbiota transplantation. We found that high-salt diet induced hypertension in Wistar rats. The fecal microbiota of healthy rats could dramatically lower blood pressure (BP) of hypertensive rats, whereas the fecal microbiota of hSIH rats had opposite effects. The composition, metabolism, and interrelationship of intestinal flora in hSIH rats were considerably reshaped, including the increased corticosterone level and reduced Bacteroides and arachidonic acid levels, which tightly correlated with BP. The serum corticosterone level was also significantly increased in rats with hSIH. Furthermore, the above abnormalities were confirmed in patients with hypertension. The intestinal Bacteroides fragilis could inhibit the production of intestinal-derived corticosterone induced by high-salt diet through its metabolite arachidonic acid. CONCLUSIONS: hSIH could be transferred by fecal microbiota transplantation, indicating the pivotal roles of intestinal flora in hSIH development. High-salt diet reduced the levels of B fragilis and arachidonic acid in the intestine, which increased intestinal-derived corticosterone production and corticosterone levels in serum and intestine, thereby promoting BP elevation. This study revealed a novel mechanism different from inflammation/immunity by which intestinal flora regulated BP, namely intestinal flora could modulate BP by affecting steroid hormone levels. These findings enriched the understanding of the function of intestinal flora and its effects on hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Corticosterona/biossíntese , Microbioma Gastrointestinal/fisiologia , Hipertensão/fisiopatologia , Intestinos/química , Animais , Ácido Araquidônico/metabolismo , Bacteroides fragilis/fisiologia , Corticosterona/sangue , Transplante de Microbiota Fecal , Fezes/microbiologia , Humanos , Hipertensão/etiologia , Hipertensão/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Metabolômica/métodos , Ratos Wistar , Cloreto de Sódio na Dieta/efeitos adversos
4.
J Cell Mol Med ; 25(19): 9364-9377, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34431214

RESUMO

MiRNAs are a class of small non-coding RNAs with ability to regulate function of Treg cells and are involved in many autoimmune diseases. Our previous study found that miR-363-5p expression was significantly upregulated in peripheral Treg cells of GD patients. Herein, we aimed to investigate its effect and mechanism on Treg cell dysfunction in GD patients. The results showed that miR-363-5p upregulation was significantly associated with the Treg cell dysfunction and inflammatory factors levels in GD patients. Transcriptome sequencing revealed that 883 genes were significantly regulated by miR-363-5p in Treg cells. These genes with significant differential expression were primarily involved in lymphocyte differentiation, immunity, as well as Notch1 and various interleukin signalling pathways. Moreover, miR-363-5p can regulate HSPB1 and Notch1 through the target gene STAT4, thereby regulating Notch1 signalling pathway and inhibiting Treg cells. The effects of miR-363-5p on Treg cell function and STAT4-HSPB1-Notch1 axis were also verified in GD patients. In conclusion, our results indicated that miR-363 could inhibit the proliferation, differentiation and function of Treg cells by regulating the STAT4-HSPB1-Notch1 axis through target gene STAT4. MiR-363-5p may play an important role in Treg cell dysfunction and immune tolerance abnormalities in GD patients.


Assuntos
Proteínas de Choque Térmico/metabolismo , Imunomodulação/genética , MicroRNAs/genética , Chaperonas Moleculares/metabolismo , Receptor Notch1/metabolismo , Fator de Transcrição STAT4/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Adulto , Biomarcadores , Linhagem Celular , Citocinas/metabolismo , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Doença de Graves/diagnóstico , Doença de Graves/etiologia , Doença de Graves/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Interferência de RNA , Transdução de Sinais , Testes de Função Tireóidea
5.
Cell Immunol ; 360: 104256, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360167

RESUMO

The immune/inflammatory responses regulated by B cells are the critical determinants of atherosclerosis. B-cell receptor (BCR) plays pivotal roles in regulating B cell function. However, the composition and molecular characteristics of the BCR repertoire in atherosclerotic patients have not been fully elucidated. Herein we analyzed BCR repertoire in circulation and plaques of atherosclerotic patients by sequencing the BCR heavy chain complement determining region 3 (BCRH CDR3). Our data showed that in plaques, BCR repertoire was dramatically skewed and their combinations and diversity were significantly decreased, while the frequency of public and dominant B-cell clones was markedly increased. Additionally, BCRH CDR3 in plaques had higher positive selection pressure than that in the peripheral blood of normal subjects and atherosclerotic patients. Moreover, the BCRH CDR3 of some B cell clones specifically expanded in plaques were similar to that of antibodies which recognized certain pathogens including Influenza A virus, implying the possibility of the association between pathogens and atherosclerosis. The present study contributed to understand the roles of B cells in atherosclerosis. The design of specific antibodies based on the B cell clones specifically expanded in plaques might yield useful tools to reveal the pathogenesis of atherosclerosis, assess or alleviate the progression of atherosclerosis.


Assuntos
Aterosclerose/genética , Regiões Determinantes de Complementaridade/genética , Receptores de Antígenos de Linfócitos B/genética , Sequência de Aminoácidos/genética , Aterosclerose/imunologia , Linfócitos B/metabolismo , China , Regiões Determinantes de Complementaridade/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Receptores de Antígenos de Linfócitos B/imunologia
6.
Lipids Health Dis ; 19(1): 108, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450855

RESUMO

The seasonal variations of blood lipids have recently gained increasing interest in this field of lipid metabolism. Elucidating the seasonal patterns of blood lipids is particularly helpful for the prevention and treatment of cardiovascular and cerebrovascular diseases. However, the previous results remain controversial and the underlying mechanisms are still unclear. This mini-review is focused on summarizing the literature relevant to the seasonal variability of blood lipid parameters, as well as on discussing its significance in clinical diagnoses and management decisions.


Assuntos
Colesterol/sangue , Dislipidemias/sangue , Estações do Ano , Triglicerídeos/sangue , Dislipidemias/metabolismo , Feminino , Humanos , Lipídeos/sangue , Masculino
7.
Pharmacol Res ; 141: 114-122, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30579975

RESUMO

Previous studies have shown that pretreatment with thapsigargin (TG), a cellular stress inducer, produced potent protective actions against various pathologic injuries. So far there is no information on the effects of TG on the development of bacterial sepsis. Using lipopolysaccharides- and cecal ligation/puncture-induced sepsis models in mice, we demonstrated that preconditioning with a single bolus administration of TG conferred significant improvements in survival. The beneficial effects of TG were not mediated by ER stress induction or changes in Toll-like receptor 4 signaling. In vivo and in cultured macrophages, we identified that TG reduced the protein production of pro-inflammatory cytokines, but exhibited no significant effects on steady state levels of their transcriptions. Direct measurement on the fraction of polysome-bound mRNAs revealed that TG reduced the translational efficiency of pro-inflammatory cytokines in macrophages. Moreover, we provided evidence suggesting that repression of the mTOR (the mammalian target of rapamycin) signaling pathway, but not activation of the PERK (protein kinase R-like endoplasmic reticulum kinase)-eIF2α (eukaryotic initiation factor 2α) pathway, might be involved in mediating the TG effects on cytokine production. In summary, our results support that pharmacological preconditioning with TG may represent a novel strategy to prevent sepsis-induced mortality and organ injuries.


Assuntos
Anti-Inflamatórios/uso terapêutico , Substâncias Protetoras/uso terapêutico , Sepse/tratamento farmacológico , Tapsigargina/uso terapêutico , Animais , Citocinas/fisiologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Profilaxia Pré-Exposição , Células RAW 264.7 , Receptor 4 Toll-Like/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(42): 11925-11930, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27698125

RESUMO

Type I IFNs (IFN-α/ß) play crucial roles in the elimination of invading viruses. Multiple immune cells including macrophages recognize viral infection through a variety of pattern recognition receptors, such as Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors, and initiate type I IFN secretion and subsequent antiviral immune responses. However, the mechanisms by which host immune cells can produce adequate amounts of type I IFNs and then eliminate viruses effectively remain to be further elucidated. In the present study, we show that munc18-1-interacting protein 3 (Mint3) expression can be markedly induced during viral infection in macrophages. Mint3 enhances TLR3/4- and RIG-I-induced IRF3 activation and IFN-ß production by promoting K63-linked polyubiquitination of TNF receptor-associated factor 3 (TRAF3). Consistently, Mint3 deficiency greatly attenuated antiviral immune responses and increased viral replication. Therefore, we have identified Mint3 as a physiological positive regulator of TLR3/4 and RIG-I-induced IFN-ß production and have outlined a feedback mechanism for the control of antiviral immune responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína DEAD-box 58/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interferon beta/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Viroses/etiologia , Viroses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biomarcadores , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/virologia , Camundongos , Camundongos Knockout , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fator 3 Associado a Receptor de TNF/metabolismo , Ubiquitinação
9.
J Biol Chem ; 290(37): 22715-23, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26240146

RESUMO

The glycosylation of human chorionic gonadotropin (hCG) plays an important role in reproductive tumors. Detecting hCG N-glycosylation alteration may significantly improve the diagnostic accuracy and sensitivity of related cancers. However, developing an immunoassay directly against the N-linked oligosaccharides is unlikely because of the heterogeneity and low immunogenicity of carbohydrates. Here, we report a hydrogen/deuterium exchange and MS approach to investigate the effect of N-glycosylation on the binding of antibodies against different hCG glycoforms. Hyperglycosylated hCG was purified from the urine of invasive mole patients, and the structure of its N-linked oligosaccharides was confirmed to be more branched by MS. The binding kinetics of the anti-hCG antibodies MCA329 and MCA1024 against hCG and hyperglycosylated hCG were compared using biolayer interferometry. The binding affinity of MCA1024 changed significantly in response to the alteration of hCG N-linked oligosaccharides. Hydrogen/deuterium exchange-MS reveals that the peptide ß65-83 of the hCG ß subunit is the epitope for MCA1024. Site-specific N-glycosylation analysis suggests that N-linked oligosaccharides at Asn-13 and Asn-30 on the ß subunit affect the binding affinity of MCA1024. These results prove that some antibodies are sensitive to the structural change of N-linked oligosaccharides, whereas others are not affected by N-glycosylation. It is promising to improve glycoprotein biomarker-based cancer diagnostics by developing combined immunoassays that can determine the level of protein and measure the degree of N-glycosylation simultaneously.


Assuntos
Anticorpos Monoclonais Murinos/química , Gonadotropina Coriônica/química , Oligossacarídeos/química , Adulto , Motivos de Aminoácidos , Animais , Gonadotropina Coriônica/genética , Gonadotropina Coriônica/metabolismo , Medição da Troca de Deutério , Feminino , Glicosilação , Humanos , Camundongos , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo
10.
Acta Pharmacol Sin ; 37(5): 656-63, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26997566

RESUMO

AIM: The eicosanoids derived from phospholipids play key roles in inflammation. However, the profiles of serum eicosanoids in subclinical hypothyroidism (SH) patients and the effects of thyroxine replacement therapy (TRT) on these eicosanoids remain unclear. Many studies show that TSH regulates lipid metabolism. As eicosanoids derived from phospholipids play key roles in oxidative stress and immune function and inflammatory process, it was necessary to explore the profiles of serum eicosanoids in SH patients and the effects of thyroxine replacement therapy (TRT) on the eicosanoids. METHODS: A total of 50 Chinese SH patients and 22 healthy volunteers were recruited. SH patients received TRT (L-T4, 25 and 50 mcg/d for patients with TSH≤10.0 mIU/L and TSH>10.0 mIU/L, respectively) for 3 months. Serum levels of major eicosanoids and cPLA2 were analyzed using LC-MS and clinical biochemical assays. RESULTS: The serum levels of cPLA2, eicosanoids (8-isoPGF2a, 11-dehydroTXB2 and 12-HETE) and 11-dehydroTXB2/6-Keto-PGF1a were significantly elevated in SH patients. The serum TSH levels were significantly correlated with the levels of cPLA2 (r=+0.65), 11-dehydroTXB2 (r=+0.32) and 11-dehydroTXB2/6-Keto-PGF1a (r=+0.37). After 3-month TRT, the serum levels of TSH, cPLA2 and the above-mentioned eicosanoids in SH patients were significantly decreased. CONCLUSION: The metabolism of eicosanoids is significantly altered in Chinese SH patients, and TRT can ameliorate the abnormalities of serum eicosanoid levels.


Assuntos
Eicosanoides/sangue , Terapia de Reposição Hormonal , Hipotireoidismo/tratamento farmacológico , Tiroxina/uso terapêutico , Povo Asiático , Feminino , Humanos , Hipotireoidismo/sangue , Hipotireoidismo/etnologia , Masculino , Fosfolipases A2/sangue
11.
Neurobiol Dis ; 74: 377-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25484286

RESUMO

Endocytosis of tropomyosin related kinase B (TrkB) receptors has critical roles in brain-derived neurotrophic factor (BDNF) mediated signal transduction and biological function, however the mechanism that is governing TrkB endocytosis is still not completely understood. In this study, we showed that GSK3ß, a key kinase in neuronal development and survival, could regulate TrkB endocytosis through phosphorylating dynamin1 (Dyn1) but not dynamin2 (Dyn2). Moreover, we found that beta-amyloid (Aß) oligomer exposure could impair BDNF-dependent TrkB endocytosis and Akt activation through enhancing GSK3ß activity in cultured hippocampal neurons, which suggested that BDNF-induced TrkB endocytosis and the subsequent signaling were impaired in neuronal model of Alzheimer's disease (AD). Notably, we found that inhibiting GSK3ß phosphorylating Dyn1 by using TAT-Dyn1SpS could rescue the impaired TrkB endocytosis and Akt activation upon BDNF stimuli under Aß exposure. Finally, TAT-Dyn1SpS could facilitate BDNF-mediated neuronal survival and cognitive enhancement in mouse models of AD. These results clarified a role of GSK3ß in BDNF-dependent TrkB endocytosis and the subsequent signaling, and provided a potential new strategy by inhibiting GSK3ß-induced Dyn1 phosphorylation for AD treatment.


Assuntos
Doença de Alzheimer/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dinamina I/metabolismo , Endocitose/fisiologia , Neurônios/fisiologia , Receptor trkB/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
12.
Biochem Biophys Res Commun ; 458(3): 590-595, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25680459

RESUMO

As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by "Biotin-switch" method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Flavonas/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico/metabolismo , Proteínas/metabolismo , Apoptose/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Óxido Nítrico Sintase/metabolismo
13.
Anal Bioanal Chem ; 407(7): 1857-69, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25636227

RESUMO

O-glycosylation-site characterization of individual glycoproteins is a major challenge because of the heterogeneity of O-glycan core structures. In proteomic studies, O-glycosylation-site analysis is even more difficult because of the complexity of the sample. In this work, we designed a rapid and convenient workflow for characterizing the O-glycosylation sites of individual proteins and the human-plasma proteome. A mixture of exoglycosidases was used to partially remove O-glycan chains and leave an N-acetylgalacosamine (GalNAc) residue attached to the Ser or Thr residues. The O-glycosylated peptides could then be identified by using liquid chromatography-tandem mass spectrometry (LC-MS-MS) to detect the 203 Da mass increase. Jacalin was used to selectively isolate O-GalNAc glycopeptides before LC-MS-MS analysis, which is optional for individual proteins and necessary for complex human-plasma proteins. Bovine fetuin and human chorionic gonadotropin (hCG) were used to test the analytical workflow. The workflow indicated superior sensitivity by not only covering most previously known O-glycosylation sites but also discovering several novel sites. Using only one drop of blood, a total of 49 O-GalNAc-linked glycopeptides from 36 distinctive glycoproteins in human plasma were identified unambiguously. The approach described herein is simple, sensitive, and global for site analysis of core 1 through core 4 O-glycosylated proteins.


Assuntos
Proteínas Sanguíneas/química , Gonadotropina Coriônica/química , Proteoma , Glicosilação , Humanos
14.
BMC Neurol ; 14: 188, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25300531

RESUMO

BACKGROUND: Intracranial aneurysms are pathological dilatations of the cerebral artery, while rupture of intracranial aneurysms causes life-threatening subarachnoid hemorrhage. The molecular mechanisms of pathogenesis of intracranial aneurysms are poorly understood. MicroRNAs have fundamental roles in modulating vascular biology and disease. In the present study, we carried out a genome-wide characterization on expressions of microRNAs, and performed integrative analyses in conjunction with changes of the transcriptome in human intracranial aneurysms. METHODS: Genome-wide microRNA screening was performed in 6 intracranial aneurysmal samples and 6 normal superficial temporal arteries. Each case and control pair was individually matched with gender, age (±5 years), and high blood pressure history. Microarray analysis was performed using Agilent Human miRNA arrays. RESULTS: As compared to normal arteries, we identified 157 microRNAs that were differentially expressed in the aneurysmal tissue (P < 0.05 and fold change ≥ 2), including 72 upregulated and 85 downregulated. The changed microRNAs included endothelium-enriched microRNAs such as members of the let-7 family, miR-17, miR-23b, miR-126, hsa-miR-24-1 and miR-222, and vascular smooth muscle-enriched miRNAs such as miR-143 and miR-145. Moreover, miR-1, miR-10a, miR-125b, and miR-26a, which were implicated in modulating vascular smooth muscle cell functions such as proliferation, apoptosis and shift of phenotype, were also changed. In contrast, microRNAs involved in monocyte and macrophage functions, such as miR-155, miR-146a, miR-223, and miR-124a, were not significantly changed. Bioinformatic analysis revealed that the changed microRNAs were associated with several biological processes related to aneurysm formation, including inflammation, dysregulation of extracellular matrix, smooth muscle cell proliferation, programmed cell death, and response to oxidative stress. Interestingly, we found that a subset of the potential microRNA target genes belonged to the protein translation machinery, including various eukaryotic translation initiation factors and ribosomal proteins, and this finding was highly correlated with our previous transcriptome data showing that multiple genes of the ribosomal proteins and translation initiation and elongation factors were significantly downregulated in human intracranial aneurysms. CONCLUSIONS: Our results support that dysregulated microRNAs may have a pathogenic role in intracranial aneurysms. Disruption of the protein translation process may have a pathogenic role in the development of intracranial aneurysms.


Assuntos
Estudo de Associação Genômica Ampla , Aneurisma Intracraniano/metabolismo , MicroRNAs/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Transcriptoma
15.
Imeta ; 3(2): e167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882493

RESUMO

Numerous studies have demonstrated the pivotal roles of intestinal microbiota in many physiopathological processes through complex interactions with the host. As a unique period in a woman's lifespan, pregnancy is characterized by changes in hormones, immunity, and metabolism. The gut microbiota also changes during this period and plays a crucial role in maintaining a healthy pregnancy. Consequently, anomalies in the composition and function of the gut microbiota, namely, gut microbiota dysbiosis, can predispose individuals to various pregnancy complications, posing substantial risks to both maternal and neonatal health. However, there are still many controversies in this field, such as "sterile womb" versus "in utero colonization." Therefore, a thorough understanding of the roles and mechanisms of gut microbiota in pregnancy and its complications is essential to safeguard the health of both mother and child. This review provides a comprehensive overview of the changes in gut microbiota during pregnancy, its abnormalities in common pregnancy complications, and potential etiological implications. It also explores the potential of gut microbiota in diagnosing and treating pregnancy complications and examines the possibility of gut-derived bacteria residing in the uterus/placenta. Our aim is to expand knowledge in maternal and infant health from the gut microbiota perspective, aiding in developing new preventive and therapeutic strategies for pregnancy complications based on intestinal microecology.

16.
Int Immunopharmacol ; 140: 112784, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39083928

RESUMO

Vascular remodeling is a dynamic process involving cellular and molecular changes, including cell proliferation, migration, apoptosis and extracellular matrix (ECM) synthesis or degradation, which disrupt the homeostasis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Cigarette smoke exposure (CSE) is thought to promote vascular remodeling, but the components are complex and the mechanisms are unclear. In this review, we overview the progression of major components of cigarette smoke (CS), such as nicotine and acrolein, involved in vascular remodeling in terms of ECs injury, VSMCs proliferation, migration, apoptosis, and ECM disruption. The aim was to elucidate the effects of different components of CS on different cells of the vascular system, to discover the relevance of their actions, and to provide new references for future studies.


Assuntos
Células Endoteliais , Músculo Liso Vascular , Nicotina , Fumaça , Remodelação Vascular , Humanos , Animais , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Fumaça/efeitos adversos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Nicotina/efeitos adversos , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/metabolismo , Apoptose , Proliferação de Células , Movimento Celular , Acroleína , Nicotiana , Matriz Extracelular/metabolismo , Fumar/efeitos adversos , Produtos do Tabaco/efeitos adversos
17.
Diabetes Metab J ; 48(5): 885-900, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38853519

RESUMO

BACKGRUOUND: Metabolic dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), in which the abnormalities in brown adipose tissue (BAT) play important roles. However, the cellular composition and function of BAT as well as its pathological significance in diabetes remain incompletely understood. Our objective is to delineate the single-cell landscape of BAT-derived stromal vascular fraction (SVF) and their characteristic alterations in T2DM rats. METHODS: T2DM was induced in rats by intraperitoneal injection of low-dose streptozotocin and high-fat diet feeding. Single-cell mRNA sequencing was then performed on BAT samples and compared to normal rats to characterize changes in T2DM rats. Subsequently, the importance of key cell subsets in T2DM was elucidated using various functional studies. RESULTS: Almost all cell types in the BAT-derived SVF of T2DM rats exhibited enhanced inflammatory responses, increased angiogenesis, and disordered glucose and lipid metabolism. The multidirectional differentiation potential of adipose tissue-derived stem cells was also reduced. Moreover, macrophages played a pivotal role in intercellular crosstalk of BAT-derived SVF. A novel Rarres2+macrophage subset promoted the differentiation and metabolic function of brown adipocytes via adipose-immune crosstalk. CONCLUSION: BAT SVF exhibited strong heterogeneity in cellular composition and function and contributed to T2DM as a significant inflammation source, in which a novel macrophage subset was identified that can promote brown adipocyte function.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Macrófagos , Análise de Célula Única , Animais , Ratos , Macrófagos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Tecido Adiposo Marrom/metabolismo , Adipócitos Marrons/metabolismo , Dieta Hiperlipídica , Diferenciação Celular , Ratos Sprague-Dawley
18.
Front Immunol ; 15: 1309739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655264

RESUMO

Introduction: Macrophage-mediated inflammatory response may have crucial roles in the pathogenesis of a variety of human diseases. Growth differentiation factor 15 (GDF15) is a cytokine of the transforming growth factor-ß superfamily, with potential anti-inflammatory activities. Previous studies observed in human lungs some macrophages which expressed a high level of GDF15. Methods: In the present study, we employed multiple techniques, including immunofluorescence, flow cytometry, and single-cell RNA sequencing, in order to further clarify the identity of such GDF15high macrophages. Results: We demonstrated that macrophages derived from human peripheral blood mononuclear cells and rat bone marrow mononuclear cells by in vitro differentiation with granulocyte-macrophage colony stimulating factor contained a minor population (~1%) of GDF15high cells. GDF15high macrophages did not exhibit a typical M1 or M2 phenotype, but had a unique molecular signature as revealed by single-cell RNA sequencing. Functionally, the in vitro derived GDF15high macrophages were associated with reduced responsiveness to pro-inflammatory activation; furthermore, these GDF15high macrophages could inhibit the pro-inflammatory functions of other macrophages via a paracrine mechanism. We further confirmed that GDF15 per se was a key mediator of the anti-inflammatory effects of GDF15high macrophage. Also, we provided evidence showing that GDF15high macrophages were present in other macrophage-residing human tissues in addition to the lungs. Further scRNA-seq analysis in rat lung macrophages confirmed the presence of a GDF15high sub-population. However, these data indicated that GDF15high macrophages in the body were not a uniform population based on their molecular signatures. More importantly, as compared to the in vitro derived GDF15high macrophage, whether the tissue resident GDF15high counterpart is also associated with anti-inflammatory functions remains to be determined. We cannot exclude the possibility that the in vitro priming/induction protocol used in our study has a determinant role in inducing the anti-inflammatory phenotype in the resulting GDF15high macrophage cells. Conclusion: In summary, our results suggest that the GDF15high macrophage cells obtained by in vitro induction may represent a distinct cluster with intrinsic anti-inflammatory functions. The (patho)physiological importance of these cells in vivo warrants further investigation.


Assuntos
Diferenciação Celular , Fator 15 de Diferenciação de Crescimento , Macrófagos , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Animais , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Ratos , Células Cultivadas , Masculino , Inflamação/imunologia
19.
Microbiol Spectr ; : e0177624, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315850

RESUMO

Abdominal aortic aneurysm (AAA) is a large-vessel disease with high mortality, characterized by complex pathogenic mechanisms. Current therapeutic approaches remain insufficient to halt its progression. Fungi are important members of the gut microbiota. However, their characteristic alterations and roles in AAA remain unclear. This study investigated the role of gut fungal communities in the development of AAA through metagenomic sequencing of fecal samples from 31 healthy individuals and 33 AAA patients. We observed significant dysbiosis in the gut mycobiomes of AAA patients compared to healthy individuals, characterized by an increase in pathogenic fungi like Candida species and a decrease in beneficial yeasts such as Saccharomyces cerevisiae. The changes in fungal populations correlated strongly with clinical indicators of AAA, highlighting their potential for diagnosing and predicting AAA progression. Furthermore, our animal experiments demonstrated that Saccharomyces cerevisiae significantly ameliorated pathological alterations in AAA mice, suggesting a protective role for specific yeast strains against AAA development. These findings underscore the significant impact of gut mycobiomes on AAA and suggest that modulating these fungal communities could offer a novel therapeutic approach. Our research advances the understanding of the influence of gut microbiome on vascular diseases and suggests potential non-surgical approaches for managing AAA. By elucidating the diagnostic and therapeutic potential of gut fungi in AAA, this study provided important clues for future clinical strategies and therapeutic developments in the field of vascular medicine. IMPORTANCE: Our research highlights the crucial role of gut fungi in abdominal aortic aneurysm (AAA) development. By analyzing fecal samples from AAA patients and healthy controls, we discovered significant dysbiosis in gut fungal communities, characterized by an increase in harmful Candida species and a decrease in beneficial yeasts like Saccharomyces cerevisiae. This dysbiosis was correlated with the severity of AAA. Importantly, in animal experiments, supplementing with Saccharomyces cerevisiae significantly slowed AAA progression. These findings suggest that modulating gut fungi may offer a novel, non-surgical approach to the diagnosis and treatment of AAA, potentially reducing the need for invasive procedures.

20.
Carbohydr Polym ; 330: 121834, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368111

RESUMO

Endothelial dysfunction induced by oxidative stress is an early predictor of atherosclerosis, which can cause various cardiovascular diseases. The glycocalyx layer on the endothelial cell surface acts as a barrier to maintain endothelial biological function, and it can be impaired by oxidative stress. However, the mechanism of glycocalyx damage during the development of atherosclerosis remains largely unclear. Herein, we established a novel strategy to address these issues from the glycomic perspective that has long been neglected. Using countercharged fluorescence protein staining and quantitative mass spectrometry, we found that heparan sulfate, a major component of the glycocalyx, was structurally altered by oxidative stress. Comparative proteomics and protein microarray analysis revealed several new heparan sulfate-binding proteins, among which alpha-2-Heremans-Schmid glycoprotein (AHSG) was identified as a critical protein. The molecular mechanism of AHSG with heparin was characterized through several methods. A heparan analog could relieve atherosclerosis by protecting heparan sulfate from degradation during oxidative stress and by reducing the accumulation of AHSG at lesion sites. In the present study, the molecular mechanism of anti-atherosclerotic effect of heparin through interaction with AHSG was revealed. These findings provide new insights into understanding of glycocalyx damage in atherosclerosis and lead to the development of corresponding therapeutics.


Assuntos
Aterosclerose , Glicocálix , Humanos , Heparitina Sulfato/metabolismo , Células Endoteliais/metabolismo , Aterosclerose/tratamento farmacológico , Heparina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA