Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Nurs ; 22(1): 120, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055828

RESUMO

AIMS: To explore the effects of training programs for ophthalmic specialist nurses in Zhejiang Province of China. METHODS: The training program included one month of theoretical training and three months of practical clinical training. The Two-Tutor system was used in training. The training contents were mainly set up around four modules: specialty knowledge and clinical skills, management, clinical teaching, and nursing research. We used theoretical examination, clinical practice assessment and trainee evaluation to assess the effectiveness of the training program. Before and after the training, the trainees' core competence was assessed by a homemade questionnaire. RESULTS: In total, 48 trainees from 7 provinces (municipalities) in China participated in the training program. All trainees passed theoretical and clinical practice examinations and trainee evaluations. Their core competencies were significantly improved after training (p < 0.05). CONCLUSION: This training program for ophthalmic specialist nurses is scientific and effective in improving nurses' ability to provide ophthalmic specialist nursing care.

2.
Environ Sci Technol ; 51(20): 11742-11751, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28933160

RESUMO

In order to examine the influence of the HA molecular composition on the partitioning of Pu, ten different kinds of humic acids (HAs) of contrasting chemical composition, collected and extracted from different soil types around the world were equilibrated with groundwater at low Pu concentrations (10-14 M). Under mildly acidic conditions (pH ∼ 5.5), 29 ± 24% of the HAs were released as colloidal organic matter (>3 kDa to <0.45 µm), yet this HA fraction accounted for a vast majority of the bound Pu, 76 ± 13% on average. In comparison, the particulate HA fraction bound only 8 ± 4% on average of the added Pu. The truly dissolved Pu fraction was typically <1%. Pu binding was strongly and positively correlated with the concentrations of organic nitrogen in both particulate (>0.45 µm) and colloidal phases in terms of activity percentage and partitioning coefficient values (logKd). Based on molecular characterization of the HAs by solid state 13C nuclear magnetic resonance (NMR) and elemental analysis, Pu binding was correlated to the concentration of carboxylate functionalities and nitrogen groups in the particulate and colloidal phases. The much greater tendency of Pu to bind to colloidal HAs than to particulate HA has implications on whether NOM acts as a Pu source or sink during natural or man-induced episodic flooding.


Assuntos
Substâncias Húmicas , Plutônio , Poluentes Radioativos do Solo , Compostos Orgânicos , Solo
3.
Environ Sci Technol ; 49(19): 11458-67, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26313339

RESUMO

Pu concentrations in wetland surface sediments collected downstream of a former nuclear processing facility in F-Area of the Savannah River Site (SRS), USA, were ∼2.5 times greater than those measured in the associated upland aquifer sediments; similarly, the Pu concentration solid/water ratios were orders of magnitude greater in the wetland than in the low-organic matter content aquifer soils. Sediment Pu concentrations were correlated to total organic carbon and total nitrogen contents and even more strongly to hydroxamate siderophore (HS) concentrations. The HS were detected in the particulate or colloidal phases of the sediments but not in the low molecular weight fractions (<1000 Da). Macromolecules which scavenged the majority of the potentially mobile Pu were further separated from the bulk mobile organic matter fraction ("water extract") via an isoelectric focusing experiment (IEF). An electrospray ionization Fourier-transform ion cyclotron resonance ultrahigh resolution mass spectrometry (ESI FTICR-MS) spectral comparison of the IEF extract and a siderophore standard (desferrioxamine; DFO) suggested the presence of HS functionalities in the IEF extract. This study suggests that while HS are a very minor component in the sediment particulate/colloidal fractions, their concentrations greatly exceed those of ambient Pu, and HS may play an especially important role in Pu immobilization/remobilization in wetland sediments.


Assuntos
Sedimentos Geológicos/química , Ácidos Hidroxâmicos/química , Plutônio/análise , Plutônio/química , Sideróforos/química , Poluentes Radioativos do Solo/análise , Áreas Alagadas , Desferroxamina/química , Focalização Isoelétrica , Nitrogênio/química , Compostos Orgânicos/química , Sideróforos/análise , Poluentes Radioativos do Solo/química , South Carolina , Espectrometria de Massas por Ionização por Electrospray/métodos
4.
Appl Environ Microbiol ; 80(9): 2693-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24561582

RESUMO

The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 µM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.


Assuntos
Iodetos/metabolismo , Manganês/metabolismo , Roseobacter/metabolismo , Superóxidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Oxirredução , Roseobacter/enzimologia , Roseobacter/genética , Roseobacter/isolamento & purificação , Água do Mar/microbiologia
5.
Environ Sci Technol ; 48(19): 11218-26, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25219373

RESUMO

(129)I derived from a former radionuclide disposal basin located on the Savannah River Site (SRS) has concentrated in a wetland 600 m downstream. To evaluate temporal environmental influences on iodine speciation and mobility in this subtropical wetland environment, groundwater was collected over a three-year period (2010-2012) from a single location. Total (127)I and (129)I showed significant temporal variations, ranging from 68-196 nM for (127)I and <5-133 pCi/L for (129)I. These iodine isotopes were significantly correlated with groundwater acidity and nitrate, two parameters elevated within the contaminant plume. Additionally, (129)I levels were significantly correlated with those of (127)I, suggesting that biogeochemical controls on (127)I and (129)I are similar within the SRS aquifer/wetland system. Iodine speciation demonstrates temporal variations as well, reflecting effects from surface recharges followed by acidification of groundwater and subsequent formation of anaerobic conditions. Our results reveal a complex system where few single ancillary parameters changed in a systematic manner with iodine speciation. Instead, changes in groundwater chemistry and microbial activity, driven by surface hydrological events, interact to control iodine speciation and mobility. Future radiological risk models should consider the flux of (129)I in response to temporal changes in wetland hydrologic and chemical conditions.


Assuntos
Água Subterrânea/análise , Radioisótopos do Iodo/análise , Iodo/análise , Rios/química , Poluentes Radioativos da Água/análise , Água Subterrânea/química , Hidrologia/métodos , Isótopos de Iodo/análise , Modelos Teóricos , Fatores de Risco , South Carolina , Áreas Alagadas
6.
Environ Sci Technol ; 48(6): 3186-95, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24555528

RESUMO

To study the effects of natural organic matter (NOM) on Pu sorption, Pu(IV) and (V) were amended at environmentally relevant concentrations (10(-14) M) to two soils of contrasting particulate NOM concentrations collected from the F-Area of the Savannah River Site. More Pu(IV) than (V) was bound to soil colloidal organic matter (COM). A de-ashed humic acid (i.e., metals being removed) scavenged more Pu(IV,V) into its colloidal fraction than the original HA incorporated into its colloidal fraction, and an inverse trend was thus observed for the particulate-fraction-bound Pu for these two types of HAs. However, the overall Pu binding capacity of HA (particulate + colloidal-Pu) decreased after de-ashing. The presence of NOM in the F-Area soil did not enhance Pu fixation to the organic-rich soil when compared to the organic-poor soil or the mineral phase from the same soil source, due to the formation of COM-bound Pu. Most importantly, Pu uptake by organic-rich soil decreased with increasing pH because more NOM in the colloidal size desorbed from the particulate fraction in the elevated pH systems, resulting in greater amounts of Pu associated with the COM fraction. This is in contrast to previous observations with low-NOM sediments or minerals, which showed increased Pu uptake with increasing pH levels. This demonstrates that despite Pu immobilization by NOM, COM can convert Pu into a more mobile form.


Assuntos
Recuperação e Remediação Ambiental/métodos , Substâncias Húmicas , Plutônio/química , Poluentes Radioativos do Solo/química , Plutônio/análise , Plutônio/metabolismo , Rios , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/metabolismo , Sudeste dos Estados Unidos
7.
Environ Sci Technol ; 47(17): 9635-42, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23885783

RESUMO

The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounted for up to 84% of the total iodine present. The alkaline pH (pH ∼ 8) and predominantly oxidizing environment may have prevented reduction of the iodate. In addition, groundwater samples were found to have large amounts of calcite precipitate which were likely formed as a result of CO2 degassing during removal from the deep subsurface (>70m depth). Further analyses indicated that between 7 and 40% of the dissolved (127)I and (129)I that was originally in the groundwater had coprecipitated in the calcite. Iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevating the pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of (129)I. Furthermore, the common sampling artifact resulting in the precipitation of calcite by degassing CO2, had the unintended consequence of providing insight into a potential solution for the in situ remediation of groundwater (129)I.


Assuntos
Carbonato de Cálcio/química , Água Subterrânea/análise , Iodatos/química , Iodo/análise , Poluentes Radioativos da Água/análise , Carbonato de Cálcio/análise , Carbonatos/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Iodatos/análise , Radioisótopos do Iodo/análise , Oxigênio/análise , Washington
8.
Environ Sci Technol ; 46(16): 8764-72, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22834414

RESUMO

There is an increasing concern that a considerable fraction of engineered nanoparticles (ENs), including quantum dots (QDs), will eventually find their way into the marine environment and have negative impacts on plankton. As ENs enter the ocean, they will encounter extracellular polymeric substances (EPS) from microbial sources before directly interacting with plankton cells. In this study, EPS harvested from four phytoplankton species, Amphora sp., Dunaliella tertiolecta, Phaeocystis globosa, and Thalassiosira pseudonana, were examined for potential interactions with CdSe nonfunctionalized and functionalized (carboxyl- and amine-) QDs in artificial seawater. Our results show that EPS do not reduce the solubility of QDs but rather decrease their stability. The degradation rate of QDs was positively correlated to the protein composition of EPS (defined by the ratio of protein/carbohydrate). Two approaches showed significant inhibition to the degradation of carboxyl-functionalized QDs: (1) the presence of an antioxidant, such as N-acetyl cysteine, and (2) absence of light. Owing to the complexity in evaluating integrated effects of QDs intrinsic properties and the external environmental factors that control the stability of QDs, conclusions must be based on a careful consideration of all these factors when attempting to evaluate the bioavailability of QDs and other ENs in the marine environments.


Assuntos
Fitoplâncton/química , Polímeros/química , Pontos Quânticos , Água do Mar , Luz , Concentração Osmolar , Estresse Oxidativo , Solubilidade
9.
Environ Sci Technol ; 46(9): 4837-44, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22455542

RESUMO

To develop an understanding of the role that microorganisms play in the transport of (129)I in soil-water systems, bacteria isolated from subsurface sediments were assessed for iodide oxidizing activity. Spent liquid medium from 27/84 bacterial cultures enhanced iodide oxidation 2-10 fold in the presence of H(2)O(2). Organic acids secreted by the bacteria were found to enhance iodide oxidation by (1) lowering the pH of the spent medium, and (2) reacting with H(2)O(2) to form peroxy carboxylic acids, which are extremely strong oxidizing agents. H(2)O(2)-dependent iodide oxidation increased exponentially from 8.4 to 825.9 µM with decreasing pH from 9 to 4. Organic acids with ≥2 carboxy groups enhanced H(2)O(2)-dependent iodide oxidation (1.5-15-fold) as a function of increasing pH above pH 6.0, but had no effect at pH ≤ 5.0. The results indicate that as pH decreases (≤5.0), increasing H(2)O(2) hydrolysis is the driving force behind iodide oxidation. However, at pH ≥ 6.0, spontaneous decomposition of peroxy carboxylic acids, generated from H(2)O(2) and organic acids, contributes significantly to iodide oxidation. The results reveal an indirect microbial mechanism, organic acid secretion coupled to H(2)O(2) production, that could enhance iodide oxidation and organo-iodine formation in soils and sediments.


Assuntos
Iodetos/química , Microbiologia do Solo , Poluentes Radioativos do Solo/química , Bactérias/metabolismo , Ácidos Carboxílicos/química , Peróxido de Hidrogênio/química , Radioisótopos do Iodo/química , Oxirredução
10.
Appl Environ Microbiol ; 77(6): 2153-60, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278282

RESUMO

(129)I is of major concern because of its mobility in the environment, excessive inventory, toxicity (it accumulates in the thyroid), and long half-life (∼16 million years). The aim of this study was to determine if bacteria from a (129)I-contaminated oxic aquifer at the F area of the U.S. Department of Energy's Savannah River Site, SC, could accumulate iodide at environmentally relevant concentrations (0.1 µM I(-)). Iodide accumulation capability was found in 3 out of 136 aerobic bacterial strains isolated from the F area that were closely related to Streptomyces/Kitasatospora spp., Bacillus mycoides, and Ralstonia/Cupriavidus spp. Two previously described iodide-accumulating marine strains, a Flexibacter aggregans strain and an Arenibacter troitsensis strain, accumulated 2 to 50% total iodide (0.1 µM), whereas the F-area strains accumulated just 0.2 to 2.0%. Iodide accumulation by FA-30 was stimulated by the addition of H(2)O(2), was not inhibited by chloride ions (27 mM), did not exhibit substrate saturation kinetics with regard to I(-) concentration (up to 10 µM I(-)), and increased at pH values of <6. Overall, the data indicate that I(-) accumulation likely results from electrophilic substitution of cellular organic molecules. This study demonstrates that readily culturable, aerobic bacteria of the F-area aquifer do not accumulate significant amounts of iodide; however, this mechanism may contribute to the long-term fate and transport of (129)I and to the biogeochemical cycling of iodine over geologic time.


Assuntos
Bactérias Aeróbias/metabolismo , Sedimentos Geológicos/análise , Radioisótopos do Iodo/metabolismo , Monitoramento Ambiental , Radioisótopos do Iodo/análise , Filogenia , RNA Ribossômico 16S/genética , Rios , South Carolina
11.
Environ Sci Technol ; 45(23): 9975-83, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22035296

RESUMO

In order to investigate the distributions and speciation of (129)I (and (127)I) in a contaminated F-Area groundwater plume of the Savannah River Site that cannot be explained by simple transport models, soil resuspension experiments simulating surface runoff or stormflow and erosion events were conducted. Results showed that 72-77% of the newly introduced I(-) or IO(3)(-) were irreversibly sequestered into the organic-rich riparian soil, while the rest was transformed by the soil into colloidal and truly dissolved organo-iodine, resulting in (129)I remobilization from the soil greatly exceeding the 1 pCi/L drinking water permit. This contradicts the conventional view that only considers I(-) or IO(3)(-) as the mobile forms. Laboratory iodination experiments indicate that iodine likely covalently binds to aromatic structures of the soil organic matter (SOM). Under very acidic conditions, abiotic iodination of SOM was predominant, whereas under less acidic conditions (pH ≥5), microbial enzymatically assisted iodination of SOM was predominant. The organic-rich soil in the vadose zone of F-Area thus acts primarily as a "sink," but may also behave as a potentially important vector for mobile radioiodine in an on-off carrying mechanism. Generally the riparian zone provides as a natural attenuation zone that greatly reduces radioiodine release.


Assuntos
Radioisótopos do Iodo/química , Compostos Orgânicos/química , Poluentes do Solo/química , Solo/química , Poluentes Radioativos da Água/química , Recuperação e Remediação Ambiental , Rios
12.
Environ Sci Technol ; 45(2): 489-95, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21138294

RESUMO

Field and laboratory studies were carried out to understand the cause for steady increases in (129)I concentrations emanating from radiological basins located on the Savannah River Site, South Carolina. The basins were closed in 1988 by adding limestone and slag and then capping with a low permeability engineered cover. Groundwater (129)I concentrations in a well near the basins in 1993 were 200 pCi L(-1) and are presently between 400 and 1000 pCi L(-1). Iodine speciation in the plume contained wide ranges of iodide, iodate, and organo-iodine concentrations. First-order calculations based on a basin sediment desorption study indicate that the modest increase of 0.7 pH units detected in the study site groundwater over the last 17 years since closure of the basins may be sufficient to produce the observed increased groundwater (129)I concentrations near the basins. Groundwater monitoring of the plume at the basins has shown that the migration of many of the high risk radionuclides originally present at this complex site has been attenuated. However, (129)I continues to leave the source at a rate that may have been exacerbated by the initial remediation efforts. This study underscores the importance of identifying the appropriate in situ stabilization technologies for all source contaminants, especially if their geochemical behaviors differ.


Assuntos
Radioisótopos do Iodo/análise , Monitoramento de Radiação/métodos , Rios/química , Poluentes Radioativos da Água/análise , Adsorção , Recuperação e Remediação Ambiental/métodos , Radioisótopos do Iodo/química , South Carolina , Movimentos da Água , Poluentes Radioativos da Água/química
13.
Sci Total Environ ; 693: 133626, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31377363

RESUMO

Large amounts of oil containing mucous-like marine snow formed in surface waters adjacent to the Deepwater Horizon spill that was implicated in oil delivery to the seafloor. However, whether chemical dispersants that were used increased or decreased the oil incorporation and sedimentation efficiency, and how exopolymeric substances (EPS) are involved in this process remains unresolved. To investigate the microbial responses to oil and dispersants in different oceanic settings, indicated by EPS production, petro- and non-petro carbon sedimentation, four mesocosm (M) experiments were conducted: 1) nearshore seawater with a natural microbial consortia (M2); 2) offshore seawater with f/20 nutrients (M3); 3) coastal seawater with f/20 nutrients (M4); 4) nearshore seawater with a natural microbial consortia for a longer duration (M5). Four treatments were conducted in M2, M3 and M4 whereas only three in M5: 1) a water accommodated fraction of oil (WAF), 2) a chemically-enhanced WAF prepared with Corexit (CEWAF, not in M5), 3) a 10-fold diluted CEWAF (DCEWAF); and 4) controls. Overall, oil and dispersants input, nutrient and microbial biomass addition enhanced EPS production. Dispersant addition tended to induce the production of EPS with higher protein/carbohydrate (P/C) ratios, irrespective of oceanic regions. EPS produced in M4 was generally more hydrophobic than that produced in M3. The P/C ratio of EPS in both the aggregate and the colloidal fraction was a key factor that regulated oil contribution to sinking aggregates, based on the close correlation with %petro-carbon in these fractions. In the short term (4-5 days), both the petro and non-petro carbon sedimentation efficiencies showed decreasing trends when oil/dispersants were present. In comparison, in the longer-term (16 days), petro-carbon sedimentation efficiency was less influenced by dispersants, possibly due to biological and physicochemical changes of the components of the oil-EPS-mineral phase system, which cooperatively controlled the sinking velocities of the aggregates.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Sedimentos Geológicos/microbiologia , Petróleo/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Poluição por Petróleo/análise , Água do Mar/química , Tensoativos/química
14.
Sci Total Environ ; 657: 1535-1542, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30677919

RESUMO

Spilled oil treated with Corexit dispersant can cause unintended impacts on marine environment systems including altering marine organic matter dynamics; however, impacts on microgels and marine oil snow (MOS) formation are still debated and remain to be fully understood. Extracellular polymeric substances (EPS) are a major source of marine organic carbon for MOS and microgel formation. EPS initial aggregation plays key roles in the oil degrading process and various biogeochemical reactions. Here we used four types of EPS with water accommodated fraction (WAF), chemically-enhanced WAF (CEWAF) and Corexit, to represent potential situations during oil spills and post-application of Corexit. We found that Corexit alone can inhibit EPS aggregation and disperse pre-existing microgels. CEWAF can enhance EPS aggregation with efficiency by up to 80%-100% and more aggregates accumulated within the air-water interface. Additionally, more hydrophobic EPS aggregates showed high resistance to Corexit dispersion while hydrophilic EPS were more sensitive. Effects of oil spills on marine gel particle formation are primarily determined by chemical characteristics (hydrophobicity and protein content) of the constituent EPS. This study offers unique insights for organic particle dynamics and identifies controlling factors for MOS or gel particles associated with oil spills and Corexit dispersant used.


Assuntos
Meio Ambiente , Recuperação e Remediação Ambiental/métodos , Matriz Extracelular de Substâncias Poliméricas/química , Poluição por Petróleo , Petróleo , Organismos Aquáticos/metabolismo , Fitoplâncton/metabolismo , Tensoativos/química
16.
Mar Pollut Bull ; 126: 159-165, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29421083

RESUMO

The Deepwater Horizon oil spill stimulated the release of marine snow made up of dead/living plankton/bacteria and their exopolymeric polysaccharide substances (EPS), termed marine oil snow (MOS), promoting rapid removal of oil from the water column into sediments near the well site. Mesocosm simulations showed that Macondo surrogate oil readily associates with the marine snow. Quantitative solid-state 13C NMR readily distinguishes this oil from naturally formed marine snow and reveals that adding the dispersant Corexit enhances the amount of oil associated with the MOS, thus contributing to rapid removal from the water column. Solvent extraction of MOS removes the oil-derived compounds for analysis by one and two-dimensional GC/MS and evaluation of potential transformations they undergo when associated with the EPS. The results reveal that the oil associated with EPS is subjected to rapid transformation, in a matter of days, presumably by bacteria and fungi associated with EPS.


Assuntos
Bactérias , Poluição por Petróleo/análise , Plâncton , Poluentes Químicos da Água/análise , Isótopos de Carbono/análise , Golfo do México , Espectroscopia de Ressonância Magnética , Petróleo/análise , Água/análise
17.
Chemosphere ; 181: 675-681, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28476007

RESUMO

Sunlight can inhibit or disrupt the aggregation process of marine colloids via cleavage of high molecular weight compounds into smaller, less stable fragments. In contrast, some biomolecules, such as proteins excreted from bacteria can form aggregates via cross-linking due to photo-oxidation. To examine whether light-induced aggregation can occur in the marine environment, we conducted irradiation experiments on a well-characterized protein-containing exopolymeric substance (EPS) from the marine bacterium Sagitulla stellata. Our results show that after 1 h sunlight irradiation, the turbidity level of soluble EPS was 60% higher than in the dark control. Flow cytometry also confirmed that more particles of larger sized were formed by sunlight. In addition, we determined a higher mass of aggregates collected on filter in the irradiated samples. This suggests light can induce aggregation of this bacterial EPS. Reactive oxygen species hydroxyl radical and peroxide played critical roles in the photo-oxidation process, and salts assisted the aggregation process. The observation that Sagitulla stellata EPS with relatively high protein content promoted aggregation, was in contrast to the case where no significant differences were found in the aggregation of a non-protein containing phytoplankton EPS between the dark and light conditions. This, together with the evidence that protein-to-carbohydrate ratio of aggregates formed under light condition is significantly higher than that formed under dark condition suggest that proteins are likely the important component for aggregate formation. Light-induced aggregation provides new insights into polymer assembly, marine snow formation, and the fate/transport of organic carbon and nitrogen in the ocean.


Assuntos
Bactérias/metabolismo , Luz , Fitoplâncton/metabolismo , Polímeros/metabolismo , Carboidratos , Coloides/metabolismo , Oxirredução/efeitos da radiação , Agregados Proteicos/efeitos da radiação , Proteínas/metabolismo , Luz Solar
18.
Mar Biotechnol (NY) ; 18(6): 630-644, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27844293

RESUMO

Sediments in the Houston Ship Channel and upper Galveston Bay, Texas, USA, are polluted with polychlorinated dibenzo-p-dioxins/furans (PCDD/F; ≤46,000 ng/kg dry weight (wt.)) with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener, contributing >50 % of the total toxic equivalents (TEQ) at most locations. We measured PCDD/F concentrations in sediments and evaluated the potential for enhanced in situ biodegradation by surveying for Dehalococcoides mccartyi, an obligate organohalide respiring bacterium. Dehalococcoides spp. (98 % similar to D. mccartyi) and 22 other members of the class Dehalococcoidia were predominant 16S ribosomal RNA (rRNA) phylotypes. Dehalococcoides spp. were also present in the active fraction of the bacterial community. Presence/absence PCR screening detected D. mccartyi in sediment cores and sediment grab samples having at least 1 ng/kg dry wt. TEQ at salinities ranging from 0.6 to 19.5 PSU, indicating that they are widespread in the estuarine environment. Organic carbon-only and organic carbon + sulfate-amended sediment microcosm experiments resulted in ∼60 % reduction of ambient 2,3,7,8-TCDD in just 24 months leading to reductions in total TEQs by 38.4 and 45.0 %, respectively, indicating that 2,3,7,8-TCDD degradation is occurring at appreciable rates.


Assuntos
Baías/microbiologia , Benzofuranos/metabolismo , Chloroflexi/metabolismo , Sedimentos Geológicos/microbiologia , Dibenzodioxinas Policloradas/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Chloroflexi/classificação , Chloroflexi/genética , Chloroflexi/isolamento & purificação , Estuários , Consórcios Microbianos/fisiologia , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Texas
19.
J Environ Radioact ; 153: 156-166, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26773510

RESUMO

In order to assess how environmental factors are affecting the distribution and migration of radioiodine and plutonium that were emitted from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, we quantified iodine and (239,240)Pu concentration changes in soil samples with different land uses (urban, paddy, deciduous forest and coniferous forest), as well as iodine speciation in surface water and rainwater. Sampling locations were 53-63 km northwest of the FDNPP within a 75-km radius, in close proximity of each other. A ranking of the land uses by their surface soil (<4 cm) stable (127)I concentrations was coniferous forest > deciduous forest > urban > paddy, and (239,240)Pu concentrations ranked as deciduous forest > coniferous forest > paddy ≥ urban. Both were quite distinct from that of (134)Cs and (137)Cs: urban > coniferous forest > deciduous forest > paddy, indicating differences in their sources, deposition phases, and biogeochemical behavior in these soil systems. Although stable (127)I might not have fully equilibrated with Fukushima-derived (129)I, it likely still works as a proxy for the long-term fate of (129)I. Surficial soil (127)I content was well correlated to soil organic matter (SOM) content, regardless of land use type, suggesting that SOM might be an important factor affecting iodine biogeochemistry. Other soil chemical properties, such as Eh and pH, had strong correlations to soil (127)I content, but only within a given land use (e.g., within urban soils). Organic carbon (OC) concentrations and Eh were positively, and pH was negatively correlated to (127)I concentrations in surface water and rain samples. It is also noticeable that (127)I in the wet deposition was concentrated in both the deciduous and coniferous forest throughfall and stemfall water, respectively, comparing to the bulk rainwater. Further, both forest throughfall and stemflow water consisted exclusively of organo-iodine, suggesting all inorganic iodine in the original bulk deposition (∼ 28.6% of total iodine) have been completely converted to organo-iodine. Fukushima-derived (239,240)Pu was detectable at a distance ∼ 61 km away, NW of FDNPP. However, it is confined to the litter layer, even three years after the FDNPP accident-derived emissions. Plutonium-239,240 activities were significantly correlated with soil OC and nitrogen contents, indicating Pu may be associated with nitrogen-containing SOM, similar to what has been observed at other locations in the United States. Together, these finding suggest that natural organic matter (NOM) plays a key role in affecting the fate and transport of I and Pu and may warrant greater consideration for predicting long-term stewardship of contaminated areas and evaluating various remediation options in Japan.


Assuntos
Radioisótopos de Césio/análise , Substâncias Húmicas/análise , Radioisótopos do Iodo/análise , Plutônio/análise , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Florestas , Acidente Nuclear de Fukushima , Iodo/análise , Japão
20.
J Environ Radioact ; 139: 43-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25464040

RESUMO

During the last few decades, considerable research efforts have been extended to identify more effective remediation treatment technologies to lower the (129)I concentrations to below federal drinking water standards at the Hanford Site (Richland, USA). Few studies have taken iodate into consideration, though recently iodate, instead of iodide, was identified as the major species in the groundwater of 200-West Area within the Hanford Site. The objective of this study was thus to quantify and understand aqueous radioiodine species transformations and uptake by three sediments collected from the semi-arid, carbonate-rich environment of the Hanford subsurface. All three sediments reduced iodate (IO3(-)) to iodide (I(-)), but the loamy-sand sediment reduced more IO3(-) (100% reduced within 7 days) than the two sand-textured sediments (∼20% reduced after 28 days). No dissolved organo-iodine species were observed in any of these studies. Iodate uptake Kd values ([Isolid]/[Iaq]; 0.8-7.6 L/kg) were consistently and appreciably greater than iodide Kd values (0-5.6 L/kg). Furthermore, desorption Kd values (11.9-29.8 L/kg) for both iodate and iodide were consistently and appreciably greater than uptake Kd values (0-7.6 L/kg). Major fractions of iodine associated with the sediments were unexpectedly strongly bound, such that only 0.4-6.6 % of the total sedimentary iodine could be exchanged from the surface with KCl solution, and 0-1.2% was associated with Fe or Mn oxides (weak NH2HCl/HNO3 extractable fraction). Iodine incorporated into calcite accounted for 2.9-39.4% of the total sedimentary iodine, whereas organic carbon (OC) is likely responsible for the residual iodine (57.1-90.6%) in sediments. The OC, even at low concentrations, appeared to be controlling iodine binding to the sediments, as it was found that the greater the OC concentrations in the sediments, the greater the values of uptake Kd, desorption Kd, and the greater residual iodine concentrations (non-exchangeable, non-calcite-incorporated and non-Mn, Fe-oxide associated). This finding is of particular interest because it suggests that even very low OC concentrations, <0.2%, may have an impact on iodine geochemistry. The findings that these sediments can readily reduce IO3(-), and that IO3(-) sorbs to a greater extent than I(-), sheds light into earlier unexplained Hanford field data that demonstrated increases in groundwater (127)I(-)/(127)IO3(-) ratios and a decrease groundwater (129)IO3(-) concentrations along a transect away from the point sources, where iodine was primarily introduced as IO3(-). While a majority of the radioiodine does not bind to these alkaline sediments, there is likely a second smaller iodine fraction in the Hanford subsurface that is strongly bound, presumably to the sediment OC (and carbonate) phases. This second fraction may have an impact on establishing remediation goals and performance assessment calculations.


Assuntos
Sedimentos Geológicos/análise , Radioisótopos do Iodo/análise , Carbonatos/análise , Água Subterrânea/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA