Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 65(4): 1206-1221, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27809333

RESUMO

Great progress has been achieved in the study of Hippo signaling in regulating tumorigenesis; however, the downstream molecular events that mediate this process have not been completely defined. Moreover, regulation of Hippo signaling during tumorigenesis in hepatocellular carcinoma (HCC) remains largely unknown. In the present study, we systematically investigated the relationship between Yes-associated protein/TEA domain family member (YAP-TEAD) and hepatocyte nuclear factor 4-alpha (HNF4α) in the hepatocarcinogenesis of HCC cells. Our results indicated that HNF4α expression was negatively regulated by YAP1 in HCC cells by a ubiquitin proteasome pathway. By contrast, HNF4α was found to directly associate with TEAD4 to compete with YAP1 for binding to TEAD4, thus inhibiting the transcriptional activity of YAP-TEAD and expression of their target genes. Moreover, overexpression of HNF4α was found to significantly compromise YAP-TEAD-induced HCC cell proliferation and stem cell expansion. Finally, we documented the regulatory mechanism between YAP-TEAD and HNF4α in rat and mouse tumor models, which confirmed our in vitro results. CONCLUSION: There is a double-negative feedback mechanism that controls TEAD-YAP and HNF4α expression in vitro and in vivo, thereby regulating cellular proliferation and differentiation. Given that YAP acts as a dominant oncogene in HCC and plays a crucial role in stem cell homeostasis and tissue regeneration, manipulating the interaction between YAP, TEADs, and HNF4α may provide a new approach for HCC treatment and regenerative medicine. (Hepatology 2017;65:1206-1221).


Assuntos
Carcinoma Hepatocelular/genética , Fator 4 Nuclear de Hepatócito/genética , Neoplasias Hepáticas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biópsia por Agulha , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Distribuição Aleatória , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
2.
Mol Pharm ; 14(9): 3188-3200, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28763230

RESUMO

We report the development of sponge Haliclona sp. spicules, referred to as SHS, and its topical application in skin delivery of hydrophilic biomacromolecules, a series of fluorescein isothiocyanate-dextrans (FDs). SHS are silicious oxeas which are sharp-edged and rod-shaped (∼120 µm in length and ∼7 µm in diameter). SHS can physically disrupt skin in a dose-dependent manner and retain within the skin over at least 72 h, which allows sustained skin penetration of hydrophilic biomacromolecules. The magnitude of enhancement of FD delivery into skin induced by SHS treatment was dependent on its molecular weight. Specifically, SHS topical application enhanced FD-10 (MW: 10 kDa) penetration into porcine skin in vitro by 33.09 ± 7.16-fold compared to control group (p < 0.01). SHS dramatically increased the accumulation of FD-10 into and across the dermis by 62.32 ± 13.48-fold compared to the control group (p < 0.01). In vivo experiments performed using BALB/c mice also confirmed the effectiveness of SHS topical application; the skin absorption of FD-10 with SHS topical application was 72.14 ± 48.75-fold (p < 0.05) and 15.39 ± 9.91-fold (p < 0.05) higher than those from the PBS and Dermaroller microneedling, respectively. Further, skin irritation study and transepidermal water loss (TEWL) measurement using guinea pig skin in vivo indicated that skin disruption induced by SHS treatment is self-limited and can be recovered with time and efficiently. SHS can offer a safe, effective, and sustained skin delivery of hydrophilic biomacromolecules and presents a promising platform technology for a wide range of cosmetic and medical applications.


Assuntos
Haliclona/metabolismo , Pele/metabolismo , Animais , Epiderme/metabolismo , Feminino , Cobaias , Interações Hidrofóbicas e Hidrofílicas , Camundongos Endogâmicos BALB C , Microscopia Confocal , Microscopia Eletrônica de Varredura , Peso Molecular , Absorção Cutânea , Água/metabolismo
3.
Biomater Sci ; 7(4): 1299-1310, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30821312

RESUMO

We demonstrated that the topical combined use of sponge Haliclona sp. spicules (SHS) and flexible liposomes (FL), referred to as SFLS (SHS-Flexible Liposomes combined System), can result in synergy to improve the skin absorption and deposition of hyaluronic acid (HA), especially in deep skin layers, both in vitro and in vivo. SHS treatment can result in skin micro-channels which are continuous, deep enough (48.6 ± 13.5 µm) and available in large quantities (850 ± 125 micro-channels per mm2). These micro-channels gradually closed up in 120 h and also allowed the intact vesicles of flexible liposomes and vesicle-bound or vesicle-encapsulated HA to penetrate into the skin-deep layers under the driving force of transdermal osmotic gradients. Specifically, SFLS topical application enhanced the penetration of FITC-HA (MW: 250 kDa) into porcine skin in vitro up to 23.2 ± 3.7%, which is 19.4 ± 3.1-fold (p < 0.001) that of a Phosphate Buffered Saline (PBS) group, 3.4 ± 0.5-fold (p < 0.01) that of an SHS group and 3.6 ± 0.6-fold (p < 0.01) that from the combined use of a Dermaroller and flexible liposomes. Moreover, SFLS can lead to significantly enhanced skin deposition of HA in all skin layers, especially in deep skin layers: up to 86.8 ± 4.1% of HA absorbed by skin was accumulated in deep skin layers. The effectiveness of SFLS topical application was also confirmed in vivo by using BALB/c mice. In addition, a skin irritation and toxicity study showed that the SFLS treatment may cause very minimal redness and the skin can recover in a short time. In sum, the combined use of SHS and FL (SFLS) offers a promising strategy to safely and effectively improve the skin delivery of hydrophilic biomacromolecules such as HA.


Assuntos
Ácido Hialurônico/química , Poríferos/química , Pele/química , Animais , Feminino , Cabelo/química , Cabelo/citologia , Ácido Hialurônico/administração & dosagem , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Pele/citologia , Absorção Cutânea , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA