Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 40(19): e1900098, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31328312

RESUMO

The directed assembly of conjugated polymers into macroscopic organization with controlled orientation and placement is pivotal in improving device performance. Here, the supramolecular assembly of oriented spherulitic crystals of poly(3-butylthiophene) surrounding a single carbon nanotube fiber under controlled solvent evaporation of solution-cast films is reported. Oriented lamellar structures nucleate on the surface of the nanotube fiber in the form of a transcrystalline interphase. The factors influencing the formation of transcrystals are investigated in terms of chemical structure, crystallization temperature, and time. Dynamic process measurements exhibit the linear growth of transcrystals with time. Microstructural analysis of transcrystals reveals individual lamellar organization and crystal polymorphism. The form II modification occurs at low temperatures, while both form I and form II modifications coexist at high temperatures. A possible model is presented to interpret transcrystallization and polymorphism.


Assuntos
Nanotubos de Carbono/química , Polímeros/química , Cristalização , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Tamanho da Partícula
2.
Langmuir ; 30(48): 14631-7, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25412408

RESUMO

We report on a series of experiments on large-area ordered patterns of graphene oxide on solid substrates deposited from aqueous dispersions by directed drop evaporation. The aqueous dispersion of graphene oxide exhibits phase transitions from isotropic to liquid crystalline nematic phases via a biphasic region with increasing concentration. In the single nematic phase, schlieren textures accompanied by oriented bands are frequent. Drying of drops in each phase results in deposition covering the whole drop base. The dynamic process of drop drying is analyzed based on the weight loss, radius change, and texture change over time. It is found that the radial bands develop in the nematic drops in the vicinity of the receding of the contact line and subsequently transform into birefringent stripes after drying. Study into the structure and morphology of the stripes reveals anisotropic wrinkling of graphene oxide sheets. The nature of stripe orientation is strongly dependent on the local nematic order at the dewetting water front. Various macroscopic patterns with different stripe orientations including radial spokes, spider webs, and parallel stripes have been generated by tuning the nematic order of drops.

3.
Sci Rep ; 14(1): 617, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182873

RESUMO

Wind energy, as a renewable energy source, offers the advantage of clean and pollution-free power generation. Its abundant resources have positioned wind power as the fastest-growing and most widely adopted method of electricity generation. Wind speed stands as a key characteristic when studying wind energy resources. This study primarily focuses on predictive models for wind speed in wind energy generation. The intense intermittency, randomness, and uncontrollability of wind speeds in wind power generation present challenges, leading to high development costs and posing stability challenges to power systems. Consequently, scientifically forecasting wind speed variations becomes imperative to ensure the safety of wind power equipment, maintain grid integration of wind power, and ensure the secure and stable operation of power systems. This holds significant guiding value and significance for power production scheduling institutions. Due to the complexity of wind speed, scientifically predicting its fluctuations is crucial for ensuring the safety of wind power equipment, maintaining wind power integration systems, and ensuring the secure and stable operation of power systems. This research aims to enhance the accuracy and stability of wind speed prediction, thereby reducing the costs associated with wind power generation and promoting the sustainable development of renewable energy. This paper utilizes an improved Hilbert-Huang transform (HHT) using complementary ensemble empirical mode decomposition (CEEMD) to overcome issues in the traditional empirical mode decomposition (EMD) method, such as component mode mixing and white noise interference. Such an approach not only enhances the efficiency of wind speed data processing but also better accommodates strong stochastic and nonlinear characteristics. Furthermore, by employing mathematical analytical methods to compute weights for each component, a dynamic neural network model is constructed to optimize wind speed time series modeling, aiming for a more accurate prediction of wind speed fluctuations. Finally, the optimized HHT-NAR model is applied in wind speed forecasting within the Xinjiang region, demonstrating significant improvements in reducing root mean square errors and enhancing coefficient of determination. This model not only showcases theoretical innovation but also exhibits superior performance in practical applications, providing an effective predictive tool within the field of wind energy generation.

4.
Langmuir ; 27(18): 11616-21, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21780786

RESUMO

Lyotropic nanowire dispersions are attractive precursors for semiconductor device fabrication because they permit the alignment control of active nanomaterials. The reliable production of nanowire-based mesophases, however, is very challenging in practice. We show that appropriately functionalized high-aspect-ratio nanowires of single-crystal ZnO spontaneously form nematic phases in organic and aqueous media. These systems show isotropic, biphasic, and nematic phases on increasing concentration, in reasonable agreement with Onsager's theory for rigid rods interacting via excluded volume. Suspensions were readily processed to produce films with large-area monodomains of aligned nanowires. Imprints of the director field in quiescently dried films display a propensity for bend deformation in the organic mesophase versus splay deformation in the aqueous case, suggesting that system elasticity may be tuned via surface functionalization. These results provide critical insight for the utilization of semiconductor nanowires as novel mesogens and further enable the use of solution-based routes for fabricating optoelectronic devices.

5.
Langmuir ; 26(3): 2107-12, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19772351

RESUMO

We report on a series of experiments on the aqueous, nematic liquid crystalline phase of single-wall carbon nanotubes (SWNTs) and their ordered assemblies on the solid substrates. The nanotubes were dispersed at a low concentration of isotropic phase, and the concentration was gradually increased by the controlled evaporation of water. In-situ isotropic-to-liquid crystalline phase transition via a biphasic region was observed during water evaporation. Drying on a substrate demonstrated the effect of surface fields on the order and alignment of SWNTs in the liquid suspension and the influence on the structure of the deposited nanotubes after evaporation.

6.
Macromol Rapid Commun ; 30(22): 1936-9, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21638478

RESUMO

Carbon nanotube-polymer composite fibers are obtained by infiltration of a monomer liquid into aligned carbon nanotube aerogel fibers with subsequent in situ polymerization. The monomer, methyl methacrylate (MMA), was infiltrated into the aerogel fibers of multi-walled carbon nanotubes (MWNTs) at room temperature and subsequently polymerized at 50 °C into poly(methyl methacrylate) (PMMA). Cross-sections of the PMMA/MWNT composite fibers showed that the PMMA filled the spaces of the nanotube fibers and bound the nanotubes together. PMMA in the composite fibers exhibited local order. The resultant composite fibers with 15 wt.-% nanotube loading exhibited a 16-fold and a 49-fold increase in tensile strength and Young's modulus, respectively, compared to the control PMMA.

7.
Small ; 4(9): 1270-83, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18752206

RESUMO

Carbon nanotubes are the best of known materials with a combination of excellent mechanical, electronic, and thermal properties. To fully exploit individual nanotube properties for various applications, the grand challenge is to fabricate macroscopic ordered nanotube assemblies. Liquid-crystalline behavior of the nanotubes provides a unique opportunity toward reaching this challenge. In this Review, the recent developments in this area are critically reviewed by discussing the strategies for fabricating liquid-crystalline phases, addressing the solution properties of liquid-crystalline suspensions, and exploiting the practical techniques of liquid-crystal routes to prepare macroscopic nanotube fibers and films.


Assuntos
Cristais Líquidos/química , Cristais Líquidos/ultraestrutura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Transição de Fase , Soluções
8.
Small ; 4(8): 1217-22, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18666161

RESUMO

A simple process to spin fibers consisting of multi-walled carbon nanotubes (CNTs) directly from their lyotropic liquid-crystalline phase is reported. Ethylene glycol is used as the lyotropic solvent, enabling a wider range of CNT types to be spun than previously. Fibers spun with CNTs and nitrogen-doped CNTs are compared. X-ray analysis reveals that nitrogen-doped CNTs have a misalignment of only +/-7.8 degrees to the fiber axis. The tensile strength of the CNT and nitrogen-doped CNT fibers is comparable but the modulus and electrical conductivity of the are lower. The electrical conductivity of both types of CNT fibers is found to be highly anisotropic. The results are discussed in context of the microstructure of the CNTs and fibers.


Assuntos
Nanotecnologia , Nanotubos de Carbono/química , Cristalização , Eletroquímica , Cristais Líquidos/ultraestrutura , Microscopia Eletrônica de Varredura , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Difração de Raios X
9.
Adv Mater ; 30(18): e1705794, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29520839

RESUMO

Hybrid nanomaterials are molecular or colloidal-level combinations of organic and inorganic materials, or otherwise strongly dissimilar materials. They are often, though not exclusively, anisotropic in shape. A canonical example is an inorganic nanorod or nanosheet sheathed in, or decorated by, a polymeric or other organic material, where both the inorganic and organic components are important for the properties of the system. Hybrid nanomaterials and nanocomposites have generated strong interest for a broad range of applications due to their functional properties. Generating macroscopic assemblies of hybrid nanomaterials and nanomaterials in nanocomposites with controlled orientation and placement by directed assembly is important for realizing such applications. Here, a survey of critical issues and themes in directed assembly of hybrid nanomaterials and nanocomposites is provided, highlighting recent efforts in this field with particular emphasis on scalable methods.

10.
ACS Appl Mater Interfaces ; 9(19): 16397-16403, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28467710

RESUMO

Donor-acceptor interfacial microstructures and fast ambipolar charge transport are pivotal in determining the device performance of inorganic-organic hybrid photovoltaics. Here, we report on a series of one-dimensional coaxial p-n junction core-shell nanohybrids formed by direct side-on attachment of carboxylated poly(3-alkylthiophene)s onto single-crystalline ZnO nanowires. The diameter of pristine ZnO nanowires is ∼30 nm, and the conjugated polymer forms a 2-10 nm shell around each nanowire. Spectroscopic studies on the resulting core-shell hybrid nanowires show an elongated conjugation length of the poly(3-alkylthiophene) backbone and fast electron transfer via ordered donor-acceptor interfaces. Hybrid nanowires in suspensions spontaneously undergo phase transitions from isotropic to nematic liquid crystalline phases via a biphasic region with increasing concentration. The unique liquid crystalline elasticity of nanohybrids results in large-area monodomain structures of aligned hybrid nanowires under simple shear flow, which are maintained in the dried film used for device fabrication. These methodologies provide a mechanism for controlling donor-acceptor interfaces and exploiting lyotropic liquid crystallinity for solution-based processing of large-area alignment of photovoltaic elements with anisotropic charge transport for hybrid photovoltaic devices.

11.
ACS Omega ; 2(11): 8526-8535, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457389

RESUMO

Hydrogen-bonding-induced ordered assembly of poly(3-alkylthiophene)s derivatives bearing carboxylic acid groups has been investigated from diluted and concentrated solutions to solid films using ultraviolet-visible absorption spectroscopy, polarized optical microscopy, and four-point probe conductivity measurements. In dilute solutions, the polymer undergoes a spontaneous structural transition from disordered coil-like to ordered rodlike conformations, which is evidenced by time-dependent chromism. Many factors such as alkyl-chain length, types of solvents, and temperature are studied to understand the assembly behavior. Transition kinetics of the assembly process reveals a universal second-order rate law, indicating an intermolecular origin due to hydrogen bonding. When more concentrated, hydrogen bonding drives nematic liquid-crystalline gelation above a critical concentration and the gels are thermally reversible. Under an appropriate balance of mechanical and thermal stresses, uniform liquid-crystalline monodomains are obtained through the application of a mechanical shear force. The dried films made from the sheared solutions display both optical and electrical anisotropies, with a more than 200% increase in charge transport parallel to the direction of shear as opposed to that in the perpendicular one.

12.
J Phys Chem B ; 109(27): 13195-9, 2005 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16852644

RESUMO

Polarizing optical microscopy is employed to study director fields around disclinations in side-chain liquid crystalline polymer films. Optical black brushes together with stripes around disclinations are observed. The stripes run parallel to the local director and thus decorate overall patterns of nematic director around disclinations. Three director patterns involving radial, spiral, and circular microstructures of a positive integer disclination with s = +1 and one hyperbolic pattern of a negative integer disclination with s = -1 are observed in the thin film. It is found that the specific configurations of a pair of (+1, -1) disclinations form during the late stage of annihilation. Increasing the film thickness leads to disclination instability. We observe that black four-brushes of disclinations with s = +/-1 split into black two-brushes, where two types of director patterns of disclinations with half-integer strengths of s = +/- 1/2 produce. Theoretical analysis is presented to explain this instability.

13.
ACS Appl Mater Interfaces ; 7(24): 13620-6, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26058086

RESUMO

Interfacial interactions between the polymer and graphene are pivotal in determining the reinforcement efficiency in the graphene-enhanced polymer nanocomposites. Here, we report on the dynamic process of graphene-induced oriented interfacial crystals of isotactic polypropylene (iPP) in the single fiber polymer composites by means of polarized optical microscopy (POM) and scanning electron microscopy (SEM). The graphene fibers are obtained by chemical reduction of graphene oxide fibers, and the latter is produced from the liquid crystalline dispersion of graphene oxide via a wet coagulation route. The lamellar crystals of iPP grow perpendicular to the fiber axis, forming an oriented transcrystalline (TC) interphase surrounding the graphene fiber. Various factors including the diameter of graphene fibers, crystallization temperature, and time are investigated. The dynamic process of polymer transcrystallization surrounding the graphene fiber is studied in the temperature range 124-132 °C. The Lauritzen-Hoffman theory of heterogeneous nucleation is applied to analyze the transcrystallization process, and the fold surface free energy is determined. Study into microstructures demonstrates a cross-hatched lamellar morphology of the TC interphase and the strong interfacial adhesion between the iPP and graphene. Under appropriate conditions, the ß-form transcrystals occur whereas the α-form transcrystals are predominant surrounding the graphene fibers.

14.
J Phys Chem B ; 118(22): 6038-46, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24856901

RESUMO

Interfacial interactions between conjugated polymers and carbon nanotubes are pivotal in determining the device performance of nanotube-based polymer electronic devices. Here, we report on interfacial structures and crystallization kinetics of poly(3-hexylthiophene) (P3HT) in the presence of single-walled carbon nanotubes (SWNTs) in anisole by means of transmission electron microscope (TEM) and ultraviolet-visible (UV-vis) absorption spectroscopy. Confined on SWNT surfaces, the P3HT forms nanofibril crystals perpendicular to the long axis of SWNTs. The equilibrium dissolution temperature of the P3HT crystals in anisole is determined to be 381 ± 10 K according to the Hoffman-Weeks extrapolation approach. Upon cooling, the polymer solution spontaneously undergoes a time-dependent chromism. Various kinetics factors such as crystallization temperature, concentration, and SWNT loading have been investigated. It is found that the growth rate (G) of the crystals scales with concentration (C) as G ∝ C(1.70±0.16). The Avrami model is utilized to analyze the nucleation mechanism and the Avrami exponents vary between 1.0 and 1.3. The Lauritzen-Hoffman theory is applied to study the chain-folding process. The fold surface free energy is calculated to be (5.28-11.9) × 10(-2) J m(-2). It is evident that the addition of 0.30 wt % SWNTs reduces the fold surface free energy by 55.6%.

15.
J Phys Chem B ; 116(42): 12887-94, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23066757

RESUMO

Transitions in the backbone conformation of polythiophenes (PTs) in organic solvents, measurable spectroscopically, have been widely observed to influence thin-film morphology; however, such conformational transitions of water-soluble PT derivatives, with respect to their intramolecular versus intermolecular origin, remain largely obscure. Here, we report on dynamic conformational transitions of poly(3-potassium hexanoate thiophene) in aqueous cetyltrimethylammonium bromide investigated by means of Fourier transform infrared spectroscopy, differential scanning calorimetry, polarizing optical microscopy, and ultraviolet-visible absorption and fluorescence spectroscopy. As-prepared complexes exist as stable hydrogels. Upon dilution, a significant time-dependent chromism occurs spontaneously. A coil-to-rod conformational transition is identified in this mechanism. Study into the corresponding kinetics demonstrates an inverse first-order rate law. It is found that the conformational transition is thermally reversible and concentration-independent. The critical transition temperature is largely dependent on the surfactant architecture. A theoretical model is presented to explain this new phenomenon and the mechanisms behind its influence on the optoelectronic properties.


Assuntos
Compostos de Cetrimônio/química , Tensoativos/química , Termodinâmica , Tiofenos/química , Água/química , Cetrimônio , Cinética , Conformação Molecular , Solubilidade
16.
ACS Nano ; 5(10): 8357-64, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21905709

RESUMO

Controlled alignment of nanomaterials over large length scales (>1 cm) presents a challenge in the utilization of low-cost solution processing techniques in emerging nanotechnologies. Here, we report on the lyotropic liquid crystalline behavior of transition-metal-doped zinc oxide nanowires and their facile alignment over large length scales under external fields. High aspect ratio Co- and Mn-doped ZnO nanowires were prepared by solvothermal synthesis with uniform incorporation of dopant ions into the ZnO wurtzite crystal lattice. The resulting nanowires exhibited characteristic paramagnetic behavior. Suspensions of surface-functionalized doped nanowires spontaneously formed stable homogeneous nematic liquid crystalline phases in organic solvent above a critical concentration. Large-area uniaxially aligned thin films of doped nanowires were obtained from the lyotropic phase by applying mechanical shear and, in the case of Co-doped nanowires, magnetic fields. Application of shear produced thin films in which the nanowire long axes were aligned parallel to the flow direction. Conversely, the nanowires were found to orient perpendicular to the direction of the applied magnetic fields. This indicates that the doped ZnO possesses magnetocrystalline anisotropy sufficient in magnitude to overcome the parallel alignment which would be predicted based solely on the anisotropic demagnetizing field associated with the high aspect ratio of the nanowires. We use a combination of magnetic property measurements and basic magnetostatics to provide a lower-bound estimate for the magnetocrystalline anisotropy.

17.
ACS Appl Mater Interfaces ; 2(6): 1642-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20507070

RESUMO

Nanocomposites of carbon nanotube fibers have been prepared using controlled polymer crystallization confined in nanotube aerogel fibers. The polyethylene nanocomposites have been investigated by means of polarized optical microscopy (POM), scanning electron microscopy (SEM) and wide-angle X-ray diffraction (WAXD). The individual nanotubes are periodically decorated with polyethylene nanocrystals, forming aligned hybrid shish-kebab nanostructures. After melting and recrystallization, transcrystalline lamellae connecting the adjacent aligned nanotubes develop. Microstructural analysis shows that the nanotubes can nucleate the growth of both orthorhombic and monoclinic crystals of polyethylene in the quiescent state. The tensile strength, modulus, and axial electrical conductivity of these polyethylene/CNT composite fibers are as high as 600 MPa, 60 GPa, and 5000 S/m, respectively.


Assuntos
Nanocompostos/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Polímeros/química , Cristalização , Módulo de Elasticidade , Eletroquímica/métodos , Microscopia Eletrônica de Varredura/métodos , Nanoestruturas , Óptica e Fotônica , Resistência à Tração , Difração de Raios X
18.
ACS Nano ; 4(3): 1716-22, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20163133

RESUMO

An ultrafast microwave annealing process has been developed to reduce the defect density in vertically aligned carbon nanotubes (CNTs). Raman and thermogravimetric analyses have shown a distinct defect reduction in the CNTs annealed in microwave for 3 min. Fibers spun from the as-annealed CNTs, in comparison with those from the pristine CNTs, show increases of approximately 35% and approximately 65%, respectively, in tensile strength ( approximately 0.8 GPa) and modulus (approximately 90 GPa) during tensile testing; an approximately 20% improvement in electrical conductivity (approximately 80000 S m(-1)) was also reported. The mechanism of the microwave response of CNTs was discussed.

20.
Nano Lett ; 6(3): 568-72, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16522064

RESUMO

We describe a simple method for separating carbon nanotubes on the basis of their mesogenicity by fractionating biphasic aqueous suspensions within the Flory chimney of the lyotropic phase diagram. Macroscopic phase separation occurs on centrifuging the biphasic nanotube suspension or allowing it to stand. Long, straight nanotubes with higher mesogenicity (liquid crystalline forming ability) segregate preferentially to the liquid crystalline phase, whereas shorter nanotubes and impurities with lower mesogenicity segregate preferentially to the isotropic phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA