Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chin J Traumatol ; 27(2): 114-120, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37311687

RESUMO

PURPOSE: Ischemia and hypoxia are the main factors limiting limb replantation and transplantation. Static cold storage (SCS), a common preservation method for tissues and organs, can only prolong limb ischemia time to 4 - 6 h. The normothermic machine perfusion (NMP) is a promising method for the preservation of tissues and organs, which can extend the preservation time in vitro by providing continuous oxygen and nutrients. This study aimed to evaluate the difference in the efficacy of the 2 limb preservation methods. METHODS: The 6 forelimbs from beagle dogs were divided into 2 groups. In the SCS group (n = 3), the limbs were preserved in a sterile refrigerator at 4 °C for 24 h, and in the NMP group (n = 3), the perfusate prepared with autologous blood was used for the oxygenated machine perfusion at physiological temperature for 24 h, and the solution was changed every 6 h. The effects of limb storage were evaluated by weight gain, perfusate biochemical analysis, enzyme-linked immunosorbent assay, and histological analysis. All statistical analyses and graphs were performed using GraphPad Prism 9.0 one-way or two-way analysis of variance. The p value of less than 0.05 was considered to indicate statistical significance. RESULTS: In the NMP group, the weight gained percentage was 11.72% ± 4.06%; the hypoxia-inducible factor-1α contents showed no significant changes; the shape of muscle fibers was normal; the gap between muscle fibers slightly increased, showing the intercellular distance of (30.19 ± 2.83) µm; and the vascular α-smooth muscle actin (α-SMA) contents were lower than those in the normal blood vessels. The creatine kinase level in the perfusate of the NMP group increased from the beginning of perfusion, decreased after each perfusate change, and remained stable at the end of perfusion showing a peak level of 4097.6 U/L. The lactate dehydrogenase level of the NMP group increased near the end of perfusion and reached the peak level of 374.4 U/L. In the SCS group, the percentage of weight gain was 0.18% ± 0.10%, and the contents of hypoxia-inducible factor-1α increased gradually and reached the maximum level of (164.85 ± 20.75) pg/mL at the end of the experiment. The muscle fibers lost their normal shape and the gap between muscle fibers increased, showing an intercellular distance of (41.66 ± 5.38) µm. The contents of vascular α-SMA were much lower in the SCS group as compared to normal blood vessels. CONCLUSIONS: NMP caused lesser muscle damage and contained more vascular α-SMA as compared to SCS. This study demonstrated that NMP of the amputated limb with perfusate solution based on autologous blood could maintain the physiological activities of the limb for at least 24 h.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Preservação de Órgãos , Animais , Cães , Temperatura , Preservação de Órgãos/métodos , Perfusão/métodos , Extremidade Superior , Membro Anterior , Aumento de Peso , Fígado
2.
Glia ; 71(3): 758-774, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36484493

RESUMO

Following peripheral nerve injury (PNI), Wallerian degeneration (WD) in the distal stump can generate a microenvironment favorable for nerve regeneration. Brief low-frequency electrical stimulation (ES) is an effective treatment for PNI, but the mechanism underlying its effect on WD remains unclear. Therefore, we hypothesized that ES could enhance nerve regeneration by accelerating WD. To verify this hypothesis, we used a rat model of sciatic nerve transection and provided ES at the distal stump of the injured nerve. The injured nerve was then evaluated after 1, 4, 7, 14 and 21 days post injury (dpi). The results showed that ES significantly promoted the degeneration and clearance of axons and myelin, and the dedifferentiation of Schwann cells. It upregulated the expression of BDNF and NGF and increased the number of monocytes and macrophages. Through transcriptome sequencing, we systematically investigated the effect of ES on the molecular processes involved in WD at 4 dpi. Evaluation of nerves bridged using silicone tubing after transection showed that ES accelerated early axonal and vascular regeneration while delaying gastrocnemius atrophy. These results demonstrate that ES promotes nerve regeneration by accelerating WD and upregulating the expression of neurotrophic factors.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Traumatismos dos Nervos Periféricos/metabolismo , Degeneração Walleriana/terapia , Degeneração Walleriana/patologia , Neuropatia Ciática/patologia , Nervo Isquiático/metabolismo , Células de Schwann/metabolismo , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Estimulação Elétrica
3.
Mol Psychiatry ; 27(11): 4510-4525, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36056172

RESUMO

Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.


Assuntos
Montagem e Desmontagem da Cromatina , Fluoxetina , Humanos , Antidepressivos/farmacologia , Encéfalo/metabolismo , Metabolismo Energético/genética , Fluoxetina/farmacologia , Fluoxetina/metabolismo , Mamíferos , Multiômica , Animais
4.
Biometrics ; 77(2): 424-438, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32438470

RESUMO

Identifying disease-associated changes in DNA methylation can help us gain a better understanding of disease etiology. Bisulfite sequencing allows the generation of high-throughput methylation profiles at single-base resolution of DNA. However, optimally modeling and analyzing these sparse and discrete sequencing data is still very challenging due to variable read depth, missing data patterns, long-range correlations, data errors, and confounding from cell type mixtures. We propose a regression-based hierarchical model that allows covariate effects to vary smoothly along genomic positions and we have built a specialized EM algorithm, which explicitly allows for experimental errors and cell type mixtures, to make inference about smooth covariate effects in the model. Simulations show that the proposed method provides accurate estimates of covariate effects and captures the major underlying methylation patterns with excellent power. We also apply our method to analyze data from rheumatoid arthritis patients and controls. The method has been implemented in R package SOMNiBUS.


Assuntos
Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Metilação de DNA/genética , Humanos , Análise de Sequência de DNA , Sulfitos
5.
Mol Med ; 26(1): 54, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503411

RESUMO

BACKGROUND: Our objective was to investigate the efficacy of the beta-3 adrenergic receptor (ß3-AR) agonist BRL37344 for the prevention of liver steatosis and inflammation associated with nonalcoholic fatty liver disease (NAFLD). METHODS: Four groups were established: a control group (given a standard diet), a high-fat diet (HFD) group, an HFD + ß3-AR agonist (ß3-AGO) group, and an HFD + ß3-AR antagonist (ß3-ANT) group. All rats were fed for 12 weeks. The ß3-AR agonist BRL37344 and the antagonist L748337 were administered for the last 4 weeks with Alzet micro-osmotic pumps. The rat body weights (g) were measured at the end of the 4th, 8th, and 12th weeks. At the end of the 12th week, the liver weights were measured. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed with a Hitachi automatic analyzer. The lipid levels of the triglycerides (TGs), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) and the concentrations of free fatty acids (FFAs) were also measured. An oil red O kit was used to detect lipid droplet accumulation in hepatocytes. Steatosis, ballooning degeneration and inflammation were histopathologically determined. The protein and mRNA expression levels of ß3-AR, peroxisome proliferator-activated receptor-alpha (PPAR-α), peroxisome proliferator-activated receptor-gamma (PPAR-γ), mitochondrial carnitine palmitoyltransferase-1 (mCPT-1), and fatty acid translocase (FAT)/CD36 were measured by western blot analysis and RT-qPCR, respectively. RESULTS: After treatment with the ß3-AR agonist BRL37344 for 4 weeks, the levels of ALT, AST, TGs, TC, LDL-C and FFAs were decreased in the NAFLD model group compared with the HFD group. Body and liver weights, liver index values and lipid droplet accumulation were lower in the HFD + ß3-AGO group than in the HFD group. Decreased NAFLD activity scores (NASs) also showed that liver steatosis and inflammation were ameliorated after treatment with BRL37344. Moreover, the ß3-AR antagonist L748337 reversed these effects. Additionally, the protein and gene expression levels of ß3-AR, PPAR-α, and mCPT-1 were increased in the HFD + ß3-AGO group, whereas those of PPAR-γ and FAT/CD36 were decreased. CONCLUSION: The ß3-AR agonist BRL37344 is beneficial for reducing liver fat accumulation and for ameliorating liver steatosis and inflammation in NAFLD. These effects may be associated with PPARs/mCPT-1 and FAT/CD36.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Animais , Biomarcadores/sangue , Biópsia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imuno-Histoquímica , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , Substâncias Protetoras , Ratos , Receptores Adrenérgicos beta 3/genética , Índice de Gravidade de Doença
6.
Environ Sci Technol ; 49(5): 2969-76, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25642997

RESUMO

Elevated concentration of naturally occurring radioactive material (NORM) in wastewater generated from Marcellus Shale gas extraction is of great concern due to potential environmental and public health impacts. Development of a rapid and robust method for analysis of Ra-226, which is the major NORM component in this water, is critical for the selection of appropriate management approaches to properly address regulatory and public concerns. Traditional methods for Ra-226 determination require long sample holding time or long detection time. A novel method combining Inductively Coupled Mass Spectrometry (ICP-MS) with solid-phase extraction (SPE) to separate and purify radium isotopes from the matrix elements in high salinity solutions is developed in this study. This method reduces analysis time while maintaining requisite precision and detection limit. Radium separation is accomplished using a combination of a strong-acid cation exchange resin to separate barium and radium from other ions in the solution and a strontium-specific resin to isolate radium from barium and obtain a sample suitable for analysis by ICP-MS. Method optimization achieved high radium recovery (101 ± 6% for standard mode and 97 ± 7% for collision mode) for synthetic Marcellus Shale wastewater (MSW) samples with total dissolved solids as high as 171,000 mg/L. Ra-226 concentration in actual MSW samples with TDS as high as 415,000 mg/L measured using ICP-MS matched very well with the results from gamma spectrometry. The Ra-226 analysis method developed in this study requires several hours for sample preparation and several minutes for analysis with the detection limit of 100 pCi/L with RSD of 45% (standard mode) and 67% (collision mode). The RSD decreased to below 15% when Ra-226 concentration increased over 500 pCi/L.


Assuntos
Rádio (Elemento)/análise , Águas Residuárias/química , Poluentes Radioativos da Água/análise , Bário/química , Espectrometria de Massas/métodos , Salinidade , Estrôncio/química
7.
Environ Sci Technol ; 49(15): 9347-54, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26154523

RESUMO

Natural gas extraction from Marcellus Shale generates large quantities of flowback water that contain high levels of salinity, heavy metals, and naturally occurring radioactive material (NORM). This water is typically stored in centralized storage impoundments or tanks prior to reuse, treatment or disposal. The fate of Ra-226, which is the dominant NORM component in flowback water, in three centralized storage impoundments in southwestern Pennsylvania was investigated during a 2.5-year period. Field sampling revealed that Ra-226 concentration in these storage facilities depends on the management strategy but is generally increasing during the reuse of flowback water for hydraulic fracturing. In addition, Ra-226 is enriched in the bottom solids (e.g., impoundment sludge), where it increased from less than 10 pCi/g for fresh sludge to several hundred pCi/g for aged sludge. A combination of sequential extraction procedure (SEP) and chemical composition analysis of impoundment sludge revealed that Barite is the main carrier of Ra-226 in the sludge. Toxicity characteristic leaching procedure (TCLP) (EPA Method 1311) was used to assess the leaching behavior of Ra-226 in the impoundment sludge and its implications for waste management strategies for this low-level radioactive solid waste. Radiation exposure for on-site workers calculated using the RESRAD model showed that the radiation dose equivalent for the baseline conditions was well below the NRC limit for the general public.


Assuntos
Sedimentos Geológicos/química , Saúde , Rádio (Elemento)/análise , Águas Residuárias/química , Poluentes Radioativos da Água/análise , Carcinogênese/patologia , Relação Dose-Resposta à Radiação , Humanos , Pennsylvania , Fatores de Risco , Esgotos/química , Qualidade da Água
8.
Proc Natl Acad Sci U S A ; 109 Suppl 2: 17200-7, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23045678

RESUMO

Variations in maternal care in the rat affect hippocampal morphology and function as well as performance on hippocampal-dependent tests of learning and memory in the offspring. Preliminary genome-wide analyses of gene transcription and DNA methylation of the molecular basis for such maternal effects suggested differences in the epigenetic state and transcriptional activity of the Grm1 gene in the rat as a function of maternal care. Grm1 encodes the type I metabotropic glutamate receptor (mGluR1), and we found increased mGluR1 mRNA and protein in hippocampus from the adult offspring of mothers showing an increased frequency of pup licking/grooming (i.e., high-LG mothers) that was associated with a decrease in the methylation of Grm1. ChIP assays showed increased levels of histone 3 lysine 9 acetylation and histone 3 lysine 4 trimethylation of Grm1 in hippocampus from the adult offspring of high-LG compared with low-LG mothers. These histone posttranslational modifications were highly correlated, and both associate inversely with DNA methylation and positively with transcription. Studies of mGluR1 function showed increased hippocampal mGluR1-induced long-term depression in the adult offspring of high-LG compared with low-LG mothers, as well as increased paired-pulse depression (PPD). PPD is an inhibitory feedback mechanism that prevents excessive glutamate release during high-frequency stimulation. The maternal effects on both long-term depression and PPD were eliminated by treatment with an mGluR1-selective antagonist. These findings suggest that variations in maternal care can influence hippocampal function and cognitive performance through the epigenetic regulation of genes implicated in glutamatergic synaptic signaling.


Assuntos
Hipocampo/fisiologia , Comportamento Materno/fisiologia , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Sequência de Bases , Comportamento Animal/fisiologia , DNA/genética , Metilação de DNA , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Masculino , Dados de Sequência Molecular , Gravidez , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
9.
Environ Sci Technol ; 48(8): 4596-603, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24670034

RESUMO

Radium occurs in flowback and produced waters from hydraulic fracturing for unconventional gas extraction along with high concentrations of barium and strontium and elevated salinity. Radium is often removed from this wastewater by co-precipitation with barium or other alkaline earth metals. The distribution equation for Ra in the precipitate is derived from the equilibrium of the lattice replacement reaction (inclusion) between the Ra(2+) ion and the carrier ions (e.g., Ba(2+) and Sr(2+)) in aqueous and solid phases and is often applied to describe the fate of radium in these systems. Although the theoretical distribution coefficient for Ra-SrSO4 (Kd = 237) is much larger than that for Ra-BaSO4 (Kd = 1.54), previous studies have focused on Ra-BaSO4 equilibrium. This study evaluates the equilibria and kinetics of co-precipitation reactions in Ra-Ba-SO4 and Ra-Sr-SO4 binary systems and the Ra-Ba-Sr-SO4 ternary system under varying ionic strength (IS) conditions that are representative of brines generated during unconventional gas extraction. Results show that radium removal generally follows the theoretical distribution law in binary systems and is enhanced in the Ra-Ba-SO4 system and restrained in the Ra-Sr-SO4 system by high IS. However, the experimental distribution coefficient (Kd') varies widely and cannot be accurately described by the distribution equation, which depends on IS, kinetics of carrier precipitation and does not account for radium removal by adsorption. Radium removal in the ternary system is controlled by the co-precipitation of Ra-Ba-SO4, which is attributed to the rapid BaSO4 nucleation rate and closer ionic radii of Ra(2+) with Ba(2+) than with Sr(2+). Carrier (i.e., barite) recycling during water treatment was shown to be effective in enhancing radium removal even after co-precipitation was completed. Calculations based on experimental results show that Ra levels in the precipitate generated in centralized waste treatment facilities far exceed regulatory limits for disposal in municipal sanitary landfills and require careful monitoring of allowed source term loading (ASTL) for technically enhanced naturally occurring materials (TENORM) in these landfills. Several alternatives for sustainable management of TENORM are discussed.


Assuntos
Bário/isolamento & purificação , Precipitação Química , Gases/isolamento & purificação , Rádio (Elemento)/isolamento & purificação , Estrôncio/isolamento & purificação , Sulfatos/química , Poluentes Radioativos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Sulfato de Bário/química , Gases/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Reciclagem
10.
Biosens Bioelectron ; 263: 116578, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038398

RESUMO

Peripheral nerve injury (PNI) poses a significant public health issue, often leading to muscle atrophy and persistent neuropathic pain, which can drastically impact the quality of life for patients. Electrical stimulation represents an effective and non-pharmacological treatment to promote nerve regeneration. Yet, the postoperative application of electrical stimulation remains a challenge. Here, we propose a fully biodegradable, self-powered nerve guidance conduit (NGC) based on dissolvable zinc-molybdenum batteries. The conduit can offer topographic guidance for nerve regeneration and deliver sustained electrical cues between both ends of a transected nerve stump, extending beyond the surgical window. Schwann cell proliferation and adenosine triphosphate (ATP) production are enhanced by the introduction of the zinc-molybdenum batteries. In rodent models with 10-mm sciatic nerve damage, the device effectively enhances nerve regeneration and motor function recovery. This study offers innovative strategies for creating biodegradable and electroactive devices that hold important promise to optimize therapeutic outcomes for nerve regeneration.

11.
Adv Healthc Mater ; 13(3): e2302128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922434

RESUMO

Peripheral nerve injuries (PNI) can lead to mitochondrial dysfunction and energy depletion within the affected microenvironment. The objective is to investigate the potential of transplanting mitochondria to reshape the neural regeneration microenvironment. High-purity functional mitochondria with an intact structure are extracted from human umbilical cord-derived mesenchymal stem cells (hUCMSCs) using the Dounce homogenization combined with ultracentrifugation. Results show that when hUCMSC-derived mitochondria (hUCMSC-Mitos) are cocultured with Schwann cells (SCs), they promote the proliferation, migration, and respiratory capacity of SCs. Acellular nerve allografts (ANAs) have shown promise in nerve regeneration, however, their therapeutic effect is not satisfactory enough. The incorporation of hUCMSC-Mitos within ANAs has the potential to remodel the regenerative microenvironment. This approach demonstrates satisfactory outcomes in terms of tissue regeneration and functional recovery. Particularly, the use of metabolomics and bioenergetic profiling is used for the first time to analyze the energy metabolism microenvironment after PNI. This remodeling occurs through the enhancement of the tricarboxylic acid cycle and the regulation of associated metabolites, resulting in increased energy synthesis. Overall, the hUCMSC-Mito-loaded ANAs exhibit high functionality to promote nerve regeneration, providing a novel regenerative strategy based on improving energy metabolism for neural repair.


Assuntos
Células-Tronco Mesenquimais , Tecido Nervoso , Traumatismos dos Nervos Periféricos , Humanos , Nervo Isquiático , Células de Schwann , Traumatismos dos Nervos Periféricos/terapia , Matriz Extracelular , Regeneração Nervosa/fisiologia
12.
Stem Cell Res Ther ; 15(1): 215, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020413

RESUMO

BACKGROUND: A favorable regenerative microenvironment is essential for peripheral nerve regeneration. Neural tissue-specific extracellular matrix (ECM) is a natural material that helps direct cell behavior and promote axon regeneration. Both bone marrow-derived mesenchymal stem cells (BMSCs) and adipose-derived mesenchymal stem cells (ADSCs) transplantation are effective in repairing peripheral nerve injury (PNI). However, there is no study that characterizes the in vivo microenvironmental characteristics of these two MSCs for the early repair of PNI when combined with neural tissue-derived ECM materials, i.e., acellular nerve allograft (ANA). METHODS: In order to investigate biological characteristics, molecular mechanisms of early stage, and effectiveness of ADSCs- or BMSCs-injected into ANA for repairing PNI in vivo, a rat 10 mm long sciatic nerve defect model was used. We isolated primary BMSCs and ADSCs from bone marrow and adipose tissue, respectively. First, to investigate the in vivo response characteristics and underlying molecular mechanisms of ANA combined with BMSCs or ADSCs, eighty-four rats were randomly divided into three groups: ANA group, ANA+BMSC group, and ANA+ADSC group. We performed flow cytometry, RT-PCR, and immunofluorescence staining up to 4 weeks postoperatively. To further elucidate the underlying molecular mechanisms, changes in long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) were systematically investigated using whole transcriptome sequencing. We then constructed protein-protein interaction networks to find 10 top ranked hub genes among differentially expressed mRNAs. Second, in order to explore the effectiveness of BMSCs and ADSCs on neural tissue-derived ECM materials for repairing PNI, sixty-eight rats were randomized into four groups: ANA group, ANA+BMSC group, ANA+ADSC group, and AUTO group. In the ANA+BMSC and ANA+ADSC groups, ADSCs/BMSCs were equally injected along the long axis of the 10-mm ANA. Then, we performed histological and functional assessments up to 12 weeks postoperatively. RESULTS: The results of flow cytometry and RT-PCR showed that ANA combined with BMSCs exhibited more significant immunomodulatory effects, as evidenced by the up-regulation of interleukin (IL)-10, down-regulation of IL-1ß and tumor necrosis factor-alpha (TNF-α) expression, promotion of M1-type macrophage polarization to M2-type, and a significant increase in the number of regulatory T cells (Tregs). ANA combined with ADSCs exhibited more pronounced features of pro-myelination and angiogenesis, as evidenced by the up-regulation of myelin-associated protein gene (MBP and MPZ) and angiogenesis-related factors (TGF-ß, VEGF). Moreover, differentially expressed genes from whole transcriptome sequencing results further indicated that ANA loaded with BMSCs exhibited notable immunomodulatory effects and ANA loaded with ADSCs was more associated with angiogenesis, axonal growth, and myelin formation. Notably, ANA infused with BMSCs or ADSCs enhanced peripheral nerve regeneration and motor function recovery with no statistically significant differences. CONCLUSIONS: This study revealed that both ANA combined with BMSCs and ADSCs enhance peripheral nerve regeneration and motor function recovery, but their biological characteristics (mainly including immunomodulatory effects, pro-vascular regenerative effects, and pro-myelin regenerative effects) and underlying molecular mechanisms in the process of repairing PNI in vivo are different, providing new insights into MSC therapy for peripheral nerve injury and its clinical translation.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Ratos Sprague-Dawley , Engenharia Tecidual , Animais , Ratos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Masculino , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo
13.
Neuroscience ; 524: 149-157, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37286159

RESUMO

Deferoxamine (DFO) is a potent iron chelator for clinical treatment of various diseases. Recent studies have also shown its potential to promote vascular regeneration during peripheral nerve regeneration. However, the effect of DFO on the Schwann cell function and axon regeneration remains unclear. In this study, we investigated the effects of different concentrations of DFO on Schwann cell viability, proliferation, migration, expression of key functional genes, and axon regeneration of dorsal root ganglia (DRG) through a series of in vitro experiments. We found that DFO improves Schwann cell viability, proliferation, and migration in the early stages, with an optimal concentration of 25 µM. DFO also upregulates the expression of myelin-related genes and nerve growth-promoting factors in Schwann cells, while inhibiting the expression of Schwann cell dedifferentiation genes. Moreover, the appropriate concentration of DFO promotes axon regeneration in DRG. Our findings demonstrate that DFO, with suitable concentration and duration of action, can positively affect multiple stages of peripheral nerve regeneration, thereby improving the effectiveness of nerve injury repair. This study also enriches the theory of DFO promoting peripheral nerve regeneration and provides a basis for the design of sustained-release DFO nerve grafts.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Humanos , Regeneração Nervosa/fisiologia , Gânglios Espinais , Axônios , Desferroxamina/metabolismo , Desferroxamina/farmacologia , Células Cultivadas , Células de Schwann/metabolismo , Fatores de Crescimento Neural/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo
14.
EBioMedicine ; 95: 104749, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549631

RESUMO

BACKGROUND: There are sex-specific differences in the prevalence, symptomology and course of psychiatric disorders. However, preclinical models have primarily used males, such that the molecular mechanisms underlying sex-specific differences in psychiatric disorders are not well established. METHODS: In this study, we compared transcriptome-wide gene expression profiles in male and female rats within the corticolimbic system, including the cingulate cortex, nucleus accumbens medial shell (NAcS), ventral dentate gyrus and the basolateral amygdala (n = 22-24 per group/region). FINDINGS: We found over 3000 differentially expressed genes (DEGs) in the NAcS between males and females. Of these DEGs in the NAcS, 303 showed sex-dependent conservation DEGs in humans and were significantly enriched for gene ontology terms related to blood vessel morphogenesis and regulation of cell migration. Single nuclei RNA sequencing in the NAcS of male and female rats identified widespread sex-dependent expression, with genes upregulated in females showing a notable enrichment for synaptic function. Female upregulated genes in astrocytes, Drd3+MSNs and oligodendrocyte were also enriched in several psychiatric genome-wide association studies (GWAS). INTERPRETATION: Our data provide comprehensive evidence of sex- and cell-specific molecular profiles in the NAcS. Importantly these differences associate with anxiety, bipolar disorder, schizophrenia, and cross-disorder, suggesting an intrinsic molecular basis for sex-based differences in psychiatric disorders that strongly implicates the NAcS. FUNDING: This work was supported by funding from the Hope for Depression Research Foundation (MJM).


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Mentais , Humanos , Masculino , Feminino , Ratos , Animais , Encéfalo/metabolismo , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Transcriptoma , Análise de Sequência de RNA
15.
Bioact Mater ; 26: 370-386, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36942011

RESUMO

Autologous nerve grafting serves is considered the gold standard treatment for peripheral nerve defects; however, limited availability and donor area destruction restrict its widespread clinical application. Although the performance of allogeneic decellularized nerve implants has been explored, challenges such as insufficient human donors have been a major drawback to its clinical use. Tissue-engineered neural regeneration materials have been developed over the years, and researchers have explored strategies to mimic the peripheral neural microenvironment during the design of nerve catheter grafts, namely the extracellular matrix (ECM), which includes mechanical, physical, and biochemical signals that support nerve regeneration. In this study, polycaprolactone/silk fibroin (PCL/SF)-aligned electrospun material was modified with ECM derived from human umbilical cord mesenchymal stem cells (hUMSCs), and a dual-bionic nerve regeneration material was successfully fabricated. The results indicated that the developed biomimetic material had excellent biological properties, providing sufficient anchorage for Schwann cells and subsequent axon regeneration and angiogenesis processes. Moreover, the dual-bionic material exerted a similar effect to that of autologous nerve transplantation in bridging peripheral nerve defects in rats. In conclusion, this study provides a new concept for designing neural regeneration materials, and the prepared dual-bionic repair materials have excellent auxiliary regenerative ability and further preclinical testing is warranted to evaluate its clinical application potential.

16.
Psychoneuroendocrinology ; 136: 105600, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839083

RESUMO

Childhood abuse significantly increases the lifetime risk of negative mental health outcomes. The oxytocinergic system, which plays a role in complex social and emotional behaviors, has been shown to be sensitive to early-life experiences. While previous studies have investigated the relationship between early-life adversity and oxytocin, they did so with peripheral samples. We, therefore, aimed to characterize the relationship between early-life adversity and oxytocin receptor (OXTR) expression in the brain, using post-mortem human samples, as well as a rodent model of naturally occurring variation in early-life environment. Focusing on the dorsal anterior cingulate cortex, we compared OXTR expression and epigenetic regulation between MDD suicides with (N = 26) and without history of childhood abuse (N = 24), as well as psychiatrically healthy controls (N = 23). We also compared Oxtr expression in the cingulate cortex of adult rats raised by dams displaying high (N = 13) and low levels (N = 12) of licking and grooming (LG) behavior. Overall, our results indicate that childhood abuse associates with an upregulation of OXTR expression, and that similarly, this relationship is also observed in the cingulate cortex of adult rats raised by low-LG dams. Additionally, we found an effect of rs53576 genotype on expression, showing that carriers of the A variant also show upregulated OXTR expression. The effects of early-life adversity and rs53576 genotype on OXTR expression are, however, not explained by differences in DNA methylation within and around the MT region of the OXTR gene.


Assuntos
Receptores de Ocitocina , Suicídio , Animais , Criança , Epigênese Genética/genética , Giro do Cíngulo/metabolismo , Humanos , Ocitocina/metabolismo , Polimorfismo de Nucleotídeo Único , Ratos , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
17.
Stem Cell Res Ther ; 13(1): 18, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033187

RESUMO

Various immune cells and cytokines are present in the aftermath of peripheral nerve injuries (PNI), and coordination of the local inflammatory response is of great significance for the recovery of PNI. Mesenchymal stem cells (MSCs) exhibit immunosuppressive and anti-inflammatory abilities which can accelerate tissue regeneration and attenuate inflammation, but the role of MSCs in the regulation of the local inflammatory microenvironment after PNI has not been widely studied. Here, we summarize the known interactions between MSCs, immune cells, and inflammatory cytokines following PNI with a focus on the immunosuppressive role of MSCs. We also discuss the immunomodulatory potential of MSC-derived extracellular vesicles as a new cell-free treatment for PNI.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos dos Nervos Periféricos , Citocinas , Humanos , Imunomodulação , Traumatismos dos Nervos Periféricos/terapia
18.
Stem Cell Res Ther ; 13(1): 3, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012663

RESUMO

BACKGROUND: Peripheral nerve injury (PNI) is one of the essential causes of physical disability with a high incidence rate. The traditional tissue engineering strategy, Top-Down strategy, has some limitations. A new tissue-engineered strategy, Bottom-Up strategy (tissue-engineered microtissue strategy), has emerged and made significant research progress in recent years. However, to the best of our knowledge, microtissues are rarely used in neural tissue engineering; thus, we intended to use microtissues to repair PNI. METHODS: We used a low-adhesion cell culture plate to construct adipose-derived mesenchymal stem cells (ASCs) into microtissues in vitro, explored the physicochemical properties and microtissues components, compared the expression of cytokines related to nerve regeneration between microtissues and the same amount of two-dimension (2D)-cultured cells, co-cultured directly microtissues with dorsal root ganglion (DRG) or Schwann cells (SCs) to observe the interaction between them using immunocytochemistry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA). We used grafts constructed by microtissues and polycaprolactone (PCL) nerve conduit to repair sciatic nerve defects in rats. RESULTS: The present study results indicated that compared with the same number of 2D-cultured cells, microtissue could secrete more nerve regeneration related cytokines to promote SCs proliferation and axons growth. Moreover, in the direct co-culture system of microtissue and DRG or SCs, axons of DRG grown in the direction of microtissue, and there seems to be a cytoplasmic exchange between SCs and ASCs around microtissue. Furthermore, microtissues could repair sciatic nerve defects in rat models more effectively than traditional 2D-cultured ASCs. CONCLUSION: Tissue-engineered microtissue is an effective strategy for stem cell culture and therapy in nerve tissue engineering.


Assuntos
Regeneração Nervosa , Engenharia Tecidual , Animais , Células Cultivadas , Regeneração Nervosa/fisiologia , Ratos , Células de Schwann , Nervo Isquiático , Células-Tronco , Engenharia Tecidual/métodos
19.
Neuropsychopharmacology ; 47(5): 987-999, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34848858

RESUMO

The multifactorial etiology of stress-related disorders necessitates a constant interrogation of the molecular convergences in preclinical models of stress that use disparate paradigms as stressors spanning from environmental challenges to genetic predisposition to hormonal signaling. Using RNA-sequencing, we investigated the genomic signatures in the ventral hippocampus common to mouse models of stress. Chronic oral corticosterone (CORT) induced increased anxiety- and depression-like behavior in wild-type male mice and male mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met, a variant associated with genetic susceptibility to stress. In a separate set of male mice, chronic social defeat stress (CSDS) led to a susceptible or a resilient population, whose proportion was dependent on housing conditions, namely standard housing or enriched environment. Rank-rank-hypergeometric overlap (RRHO), a threshold-free approach that ranks genes by their p value and effect size direction, was used to identify genes from a continuous gradient of significancy that were concordant across groups. In mice treated with CORT and in standard-housed susceptible mice, differentially expressed genes (DEGs) were concordant for gene networks involved in neurotransmission, cytoskeleton function, and vascularization. Weighted gene co-expression analysis generated 54 gene hub modules and revealed two modules in which both CORT and CSDS-induced enrichment in DEGs, whose function was concordant with the RRHO predictions, and correlated with behavioral resilience or susceptibility. These data showed transcriptional concordance across models in which the stress coping depends upon hormonal, environmental, or genetic factors revealing common genomic drivers that embody the multifaceted nature of stress-related disorders.


Assuntos
Corticosterona , Estresse Psicológico , Animais , Ansiedade/genética , Corticosterona/farmacologia , Suscetibilidade a Doenças , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/induzido quimicamente , Estresse Psicológico/genética
20.
Tissue Eng Part B Rev ; 28(5): 1007-1021, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34641714

RESUMO

The involvement of cell-derived extracellular matrix (CDM) in assembling tissue engineering scaffolds has yielded significant results. CDM possesses excellent characteristics, such as ideal cellular microenvironment mimicry and good biocompatibility, which make it a popular research direction in the field of bionanomaterials. CDM has significant advantages as an expansion culture substrate for stem cells, including stabilization of phenotype, reversal of senescence, and guidance of specific differentiation. In addition, the applications of CDM-assembled tissue engineering scaffolds for disease simulation and tissue organ repair are comprehensively summarized; the focus is mainly on bone and cartilage repair, skin defect or wound healing, engineered blood vessels, peripheral nerves, and periodontal tissue repair. We consider CDM as a highly promising bionic biomaterial for tissue engineering applications and propose a vision for its comprehensive development. Impact statement Cell-derived extracellular matrix (CDM) has received continued attention on the field of tissue engineering because of its promising biological characteristics. CDM deposited in vitro is rich in protein fractions and contains a wealth of biological information that provides a suitable niche for the survival and activity of isolated cells. More importantly, the free-assembling feature of CDM allows it to participate in the assembly of tissue-engineered scaffolds, imparting bionic properties to regenerative scaffolds, and thus CDM-modified scaffolds are widely used in the reconstruction of bone and cartilage tissue, peripheral nerves, skin, and blood vessels. This article is dedicated to summarizing the important results achieved by CDM-modified tissue engineering scaffolds in tissue organ reconstruction, helping readers to understand the developments in this field in recent years.


Assuntos
Matriz Extracelular , Engenharia Tecidual , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo , Alicerces Teciduais/química , Cartilagem , Materiais Biocompatíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA