Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 483
Filtrar
1.
Cell Mol Life Sci ; 81(1): 373, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196292

RESUMO

Dental pulp stem cells (DPSCs) are responsible for maintaining pulp structure and function after pulp injury. DPSCs migrate directionally to the injury site before differentiating into odontoblast-like cells, which is a prerequisite and a determinant in pulp repair. Increasing evidence suggests that sensory neuron-stem cell crosstalk is critical for maintaining normal physiological functions, and sensory nerves influence stem cells mainly by neuropeptides. However, the role of sensory nerves on DPSC behaviors after pulp injury is largely unexplored. Here, we find that sensory nerves released significant amounts of calcitonin gene-related peptide (CGRP) near the injury site, acting directly on DPSCs via receptor activity modifying protein 1 (RAMP1) to promote collective migration of DPSCs to the injury site, and ultimately promoting pulp repair. Specifically, sensory denervation leads to poor pulp repair and ectopic mineralization, in parallel with that DPSCs failed to be recruited to the injury site. Furthermore, in vitro evidence shows that sensory nerve-deficient microenvironment suppressed DPSC migration prominently among all related behaviors. Mechanistically, the CGRP-Ramp1 axis between sensory neurons and DPSCs was screened by single-cell RNA-seq analysis and immunohistochemical studies confirmed that the expression of CGRP rather than Ramp1 increases substantially near the damaged site. We further demonstrated that CGRP released by sensory nerves binds the receptor Ramp1 on DPSCs to facilitate cell collective migration by an indirect co-culture system using conditioned medium from trigeminal neurons, CGRP recombinant protein and antagonists BIBN4096. The treatment with exogenous CGRP promoted the recruitment of DPSCs, and ultimately enhanced the quality of pulp repair. Targeting the sensory nerve could therefore provide a new strategy for stem cell-based pulp repair and regeneration.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Movimento Celular , Polpa Dentária , Proteína 1 Modificadora da Atividade de Receptores , Células Receptoras Sensoriais , Células-Tronco , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Animais , Humanos , Células Receptoras Sensoriais/metabolismo , Camundongos , Masculino , Cicatrização/fisiologia , Diferenciação Celular , Transdução de Sinais , Células Cultivadas , Ratos
2.
Small ; 20(38): e2401892, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38794995

RESUMO

Inorganic solid-state electrolytes have attracted enormous attention due to their potential safety, increased energy density, and long cycle-life benefits. However, their application in solid-state batteries is limited by unstable electrode-electrolyte interface, poor point-to-point physical contact, and low utilization of metallic anodes. Herein, interfacial engineering based on sodium (Na)-conductive polymeric solid-state interfacial adhesive is studied to improve interface stability and optimize physical contacts, constructing a robust organic-rich solid electrolyte interphase layer to prevent dendrite-induced crack propagation and security issues. The interfacial adhesive strategy significantly increases the room-temperature critical current density of inorganic Na-ion conductors from 0.8 to 3.2 mA cm-2 and markedly enhances the cycling performance of solid-state batteries up to 500 cycles, respectively. Particularly, the Na3V2(PO4)3-based full solid-state batteries with high cathode loading of 10.16 mg cm-2 also deliver an excellent cycling performance, further realizing the stable operation of solid-state laminated pouch cells. The research provides fundamental perspectives into the role of interfacial chemistry and takes the field a step closer to realizing practical solid-state batteries.

3.
Small ; 20(9): e2307448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37845027

RESUMO

Radium-223 (223 Ra) is the first-in-class alpha-emitter to mediate tumor eradication, which is commonly thought to kill tumor cells by directly cleaving double-strand DNA. However, the immunogenic characteristics and cell death modalities triggered by 223 Ra remain unclear. Here, it is reported that the 223 Ra irradiation induces the pro-inflammatory damage-associated molecular patterns including calreticulin, HMGB1, and HSP70, hallmarks of tumor immunogenicity. Moreover, therapeutic 223 Ra retards tumor progression by triggering pyroptosis, an immunogenic cell death. Mechanically, 223 Ra-induced DNA damage leads to the activation of stimulator of interferon genes (STING)-mediated DNA sensing pathway, which is critical for NLRP3 inflammasome-dependent pyroptosis and subsequent DCs maturation as well as T cell activation. These findings establish an essential role of STING in mediating alpha-emitter 223 Ra-induced antitumor immunity, which provides the basis for the development of novel cancer therapeutic strategies and combinatory therapy.


Assuntos
Piroptose , Rádio (Elemento) , Rádio (Elemento)/farmacologia , Rádio (Elemento)/uso terapêutico , Morte Celular , DNA
4.
Neuroendocrinology ; 114(8): 786-798, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38815558

RESUMO

INTRODUCTION: Dimenhydrinate and scopolamine are frequently used drugs, but they cause drowsiness and performance decrement. Therefore, it is crucial to find peripheral targets and develop new drugs without central side effects. This study aimed to investigate the anti-motion sickness action and inner ear-related mechanisms of atrial natriuretic peptide (ANP). METHODS: Endolymph volume in the inner ear was measured with magnetic resonance imaging and expression of AQP2 and p-AQP2 was detected with Western blot analysis and immunofluorescence method. RESULTS: Both rotational stimulus and intraperitoneal arginine vasopressin (AVP) injection induced conditioned taste aversion (CTA) to 0.15% sodium saccharin solution and an increase in the endolymph volume of the inner ear. However, intraperitoneal injection of ANP effectively alleviated the CTA behaviour and reduced the increase in the endolymph volume after rotational stimulus. Intratympanic injection of ANP also inhibited rotational stimulus-induced CTA behaviour, but anantin peptide, an inhibitor of ANP receptor A (NPR-A), blocked this inhibitory effect of ANP. Both rotational stimulus and intraperitoneal AVP injection increased the expression of AQP2 and p-AQP2 in the inner ear of rats, but these increases were blunted by ANP injection. In in vitro experiments, ANP addition decreased AVP-induced increases in the expression and phosphorylation of AQP2 in cultured endolymphatic sac epithelial cells. CONCLUSION: Therefore, the present study suggests that ANP could alleviate motion sickness through regulating endolymph volume of the inner ear increased by AVP, and this action of ANP is potentially mediated by activating NPR-A and antagonising the increasing effect of AVP on AQP2 expression and phosphorylation.


Assuntos
Arginina Vasopressina , Fator Natriurético Atrial , Endolinfa , Enjoo devido ao Movimento , Animais , Fator Natriurético Atrial/farmacologia , Fator Natriurético Atrial/metabolismo , Fator Natriurético Atrial/administração & dosagem , Arginina Vasopressina/farmacologia , Arginina Vasopressina/administração & dosagem , Arginina Vasopressina/metabolismo , Enjoo devido ao Movimento/tratamento farmacológico , Masculino , Endolinfa/efeitos dos fármacos , Endolinfa/metabolismo , Orelha Interna/efeitos dos fármacos , Ratos Sprague-Dawley , Aquaporina 2/metabolismo , Ratos
5.
J Org Chem ; 89(14): 9721-9732, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38949994

RESUMO

The enantioselective and diastereoselective control of 1,3-dipolar cycloaddition reactions to ß-substituted cyclic enones has been developed. The 1,3-dipolar cycloaddition of phthalazinium dicyanomethanides with cyclic dienones affords chiral tetrahydropyrrolo[2,1-a]phthalazine derivatives 3 through vinylogous iminium ion activation by combining a cinchona-based primary amine C3 and a chiral camphorsulfonic acid additive. Conversely, with a weaker 3,5-bis(trifluoromethyl)benzoic acid additive, the 1,3-dipolar cycloaddition of phthalazinium dicyanomethanides with ß-substituted cyclic enones leads to chiral hexahydroisoindolo[1,2-a]phthalazin-10(8H)-one derivatives 4 with excellent stereocontrol via endo-dienamine activation.

6.
Pediatr Dev Pathol ; 27(3): 211-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38179814

RESUMO

BACKGROUND: Pediatric granular cell tumors (GCT) involving the gastrointestinal tract (GIT) are rare with limited case report/series reported to date. METHODS: Multicenter retrospective study of pediatric GIT GCT. RESULTS: A total of 10 cases were included in the study with a median age of 13.5 years (range: 7-18 years) and were predominantly female patients (60%). In half of the patients no significant medical history was present with the remaining 5 having Crohn disease (10%), eosinophilic esophagitis (EoE) (10%), Crohn disease and EoE (10%), growth hormone deficiency (10%), and aplasia cutis congenita (10%). The GCT median size was 1.3 cm (range: 1-1.6 cm) and were more commonly located in the esophagus (70%) followed by the stomach (20%) and rectum (10%). Most of the cases showed round/polygonal tumor cells with abundant granular cytoplasm, and none of the cases had nuclear atypia, increased mitotic activity, or tumor cell necrosis. None of our cases received specific therapy for GCT other than clinical follow-up, and none of the patients had evidence of local recurrence or metastatic disease. CONCLUSION: We present our multicenter experience with GIT GCT, all cases had a benign course. Interestingly, 4 of the esophageal GCT cases (including 2 patients with EoE) showed an eosinophil-rich esophagitis in the underlying mucosa.


Assuntos
Neoplasias Gastrointestinais , Tumor de Células Granulares , Humanos , Tumor de Células Granulares/patologia , Tumor de Células Granulares/diagnóstico , Adolescente , Feminino , Criança , Masculino , Estudos Retrospectivos , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/diagnóstico
7.
AIDS Res Ther ; 21(1): 8, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297382

RESUMO

BACKGROUND: Studies on antiretroviral therapy (ART) in children living with HIV (CLHIV) are limited due to the small population and low accession rate of ART. METHODS: All 0-14-year-old CLHIV admitted to the Ganzhou Center for Disease Control and Prevention from January 2006 to June 2023 were included retrospectively. The information of treatment regimens, disease progression, and laboratory tests of the patients under ART were used to explore the outcomes and impacts of long-term ART. The normality of all the data was tested by the Shapiro-Wilk test. RESULTS: From 2006 to 2023, 18 CLHIV were reported in Ganzhou. Among them, 11 received ART and were followed up for 60.0 ± 48.4 months. After receiving ART, the median viral load of them decreased from 89,600 copies/ml to 22 copies/ml (P = 0.007), the median CD4+ T cell count increased from 380.7 cells/µL to 661.9 cells/µL (P = 0.028), and the median CD8+ T cell count decreased from 1065.8 cells/µL to 983.3 cells/µL (P = 0.584). The laboratory test results regarding liver function, renal function, blood cell count, and glucolipid metabolism tended to be within normal reference ranges, and the mean height-for-age z-score and weight-for-age z-score increased. However, all the three CLHIV who received cotrimoxazole developed pneumocystis carinii pneumonia, upper respiratory infection, skin lesions, bacterial pneumonia and/or thrush; the mean body-mass-index-for-age z-score decreased from 0.52 to -0.63. CONCLUSION: For CLHIV, ART could effectively inhibit the replication of HIV and improve the immune function of patients. More studies that focus on ART in CLHIV are urgently needed.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Criança , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Infecções por HIV/epidemiologia , Estudos Retrospectivos , Antirretrovirais/uso terapêutico , Progressão da Doença , Contagem de Linfócito CD4 , China/epidemiologia , Carga Viral , Fármacos Anti-HIV/uso terapêutico
8.
Artigo em Inglês | MEDLINE | ID: mdl-38836741

RESUMO

Objective: To investigate the influence of preoperative detrusor muscle activity on the short-term prognosis of elderly patients diagnosed with benign prostatic hyperplasia (BPH) undergoing 1470 nm semiconductor laser surgery. Methods: A retrospective study was conducted on clinical data from 165 elderly BPH patients who underwent 1470 nm semiconductor laser surgery between May 2019 and April 2023. Patients were stratified based on preoperative urodynamic study findings, specifically their bladder contractility index (BCI). Patients with a BCI ≤100 constituted the detrusor underactivity (DU) group (n=64), while those with a BCI >100 formed the non-DU group (n=101). Surgical parameters, including duration, intraoperative blood loss, postoperative hospital stay, bladder irrigation, and catheterization duration, were compared. Additionally, changes in International Prostate Symptom Score (IPSS), Quality of Life (QOL) score, residual urine volume, and peak urinary flow rate (Qmax) were assessed before and three months after surgery in both groups. Results: There were no statistically significant differences observed between the DU and non-DU groups concerning surgical duration, intraoperative blood loss, postoperative hospitalization duration, bladder irrigation duration, and postoperative catheterization duration (P > .05). Similarly, no significant disparities were noted in the IPSS and QOL scores preoperatively and at the three-month follow-up in both groups (P > .05). Both cohorts exhibited no significant differences in residual urine volume before surgery and at the three-month mark postoperatively (P > .05). However, the postoperative Qmax was significantly reduced in the DU group compared to the non-DU group (P < .05). Conclusions: Detrusor muscle activity does not exert a significant impact on clinical symptom improvement and quality of life in elderly BPH patients treated with 1470 nm semiconductor laser surgery. However, patients with DU exhibited inferior postoperative recovery in Qmax, underscoring the importance of preoperative urodynamic studies for early intervention and enhanced surgical outcomes in this patient population.

9.
Nano Lett ; 23(2): 429-436, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36603204

RESUMO

The dynamic nature of the metal halide perovskite lattice upon photoexcitation plays a vital role in their properties. Here we report an observation of light-induced structure dynamics in quasi-2D Ruddlesden-Popper phase perovskite thin films and its impact on the carrier transport properties. By a time-resolved X-ray scattering technique, we observe a rapid lattice expansion upon photoexcitation, followed by a slow relaxation over the course of 100 ns in the dark. Theoretical modeling suggests that the expansion originates from the lattice's thermal fluctuations caused by photon energy deposition. Power dependent optical spectroscopy and photoconductivity indicate that high laser powers triggered a strong local structural disorder, which increased the charge dissociation activation energy that results in localized transport. Our study investigates the impact of laser energy deposition on the lattices and the subsequent carrier transport properties, that are relevant to device operations.

10.
Nano Lett ; 23(7): 2677-2686, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36917456

RESUMO

MXenes have the potential for efficient light-to-heat conversion in photothermal applications. To effectively utilize MXenes in such applications, it is important to understand the underlying nonequilibrium processes, including electron-phonon and phonon-phonon couplings. Here, we use transient electron and X-ray diffraction to investigate the heating and cooling of photoexcited MXenes at femtosecond to nanosecond time scales. Our results show extremely strong electron-phonon coupling in Ti3C2-based MXenes, resulting in lattice heating within a few hundred femtoseconds. We also systematically study heat dissipation in MXenes with varying film thicknesses, chemical surface terminations, flake sizes, and annealing conditions. We find that the thermal boundary conductance (TBC) governs the thermal relaxation in films thinner than the optical penetration depth. We achieve a 2-fold enhancement of the TBC, reaching 20 MW m-2 K-1, by controlling the flake size or chemical surface termination, which is promising for engineering heat dissipation in photothermal and thermoelectric applications of the MXenes.

11.
Molecules ; 29(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39459255

RESUMO

Excitation wavelength controllable lanthanide upconversion allows for real-time manipulation of luminescent color in a composition-fixed material, which has been proven to be conducive to a variety of applications, such as optical anti-counterfeiting and information security. However, current available materials highly rely on the elaborate core-shell structure in order to ensure efficient excitation-dependent energy transfer routes. Herein, multicolor upconversion luminescence in response to both near-infrared I and near-infrared II (NIR-I and NIR-II) excitations is realized in a novel but simple NaYGeO4:Yb3+/Er3+ phosphor. The remarkably enhanced red emission ratio under 1532 nm excitation, compared with that under 980 nm excitation, could be attributed to the Yb3+-mediated cross-relaxation energy transfers. Moreover, multi-wavelength excitable temperature-dependent (295-823 K) upconversion luminescence realizes a ratiometric thermometry relying on the thermally coupled levels (TCLs) of Er3+. Detailed investigations demonstrate that changing excitation wavelength makes little difference for the performances of TCL-based ratiometric thermometry of NaYGeO4:Yb3+/Er3+. These findings gain more insights to manipulate cross-relaxations for excitation controllable upconversion in single activator doped materials and benefit the cognition of the effect of excitation wavelength on ratiometric luminescence thermometry.

12.
Inflammopharmacology ; 32(1): 393-404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37429999

RESUMO

Medulla Tetrapanacis (MT) is a commonly used herb to promote lactation and manage mastitis in lactating mothers. However, its anti-inflammatory and anti-bacterial effects are currently unknown. We hypothesized that MT water extract possesses anti-inflammatory and anti-bacterial effects by modulating macrophage polarization to reduce the release of inflammatory mediators and phagocytosis via inactivation of MAPKs pathways. The chemical composition of the MT water extract was analyzed by UPLC-Orbitrap-mass spectrometry. The anti-inflammatory and anti-bacterial properties of the MT water extract were examined using LPS-stimulated inflammation and Staphylococcus aureus infection model in RAW 264.7 cells, respectively. The underlying mechanism of action of the MT water extract was also investigated. We identified eight compounds by UPLC-Orbitrap-mass spectrometry that are abundant within the MT water extract. MT water extract significantly suppressed LPS-induced nitric oxide, TNF-α and IL-6 secretion in RAW 264.7 cells which was accompanied by the promotion of macrophage polarization from pro-inflammatory towards anti-inflammatory phenotypes. MT water extract significantly suppressed the LPS-induced MAPK activation. Finally, MT water extract decreased the phagocytic capacity of the RAW 264.7 cells against S. aureus infection. MT water extract could suppress LPS-induced inflammation by promoting macrophages towards an anti-inflammatory phenotype. In addition, MT also inhibited the growth of S. aureus.


Assuntos
Lactação , Lipopolissacarídeos , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Staphylococcus aureus , Transdução de Sinais , Inflamação/tratamento farmacológico , Macrófagos , Anti-Inflamatórios/farmacologia
13.
J Biol Chem ; 298(7): 102010, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525270

RESUMO

Follistatin (FS)-like 1 (FSTL1) is a member of the FS-SPARC (secreted protein, acidic and rich in cysteine) family of secreted and extracellular matrix proteins. The functions of FSTL1 have been studied in heart and lung injury as well as in wound healing; however, the role of FSTL1 in the kidney is largely unknown. Here, we show using single-cell RNA-Seq that Fstl1 was enriched in stromal cells in obstructed mouse kidneys. In addition, immunofluorescence demonstrated that FSTL1 expression was induced in fibroblasts during kidney fibrogenesis in mice and human patients. We demonstrate that FSTL1 overexpression increased renal fibrosis and activated the Wnt/ß-catenin signaling pathway, known to promote kidney fibrosis, but not the transforming growth factor ß (TGF-ß), Notch, Hedgehog, or Yes-associated protein (YAP) signaling pathways in obstructed mouse kidneys, whereas inhibition of FSTL1 lowered Wnt/ß-catenin signaling. Importantly, we show that FSTL1 interacted with Wnt ligands and the Frizzled (FZD) receptors but not the coreceptor lipoprotein receptor-related protein 6 (LRP6). Specifically, we found FSTL1 interacted with Wnt3a through its extracellular calcium-binding (EC) domain and von Willebrand factor type C-like (VWC) domain, and with FZD4 through its EC domain. Furthermore, we show that FSTL1 increased the association of Wnt3a with FZD4 and promoted Wnt/ß-catenin signaling and fibrogenesis. The EC domain interacting with both Wnt3a and FZD4 also enhanced Wnt3a signaling. Therefore, we conclude that FSTL1 is a novel extracellular enhancer of the Wnt/ß-catenin pathway.


Assuntos
Proteínas Relacionadas à Folistatina , Receptores Frizzled , Rim , Via de Sinalização Wnt , Animais , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Receptores Frizzled/metabolismo , Humanos , Rim/metabolismo , Rim/fisiopatologia , Ligantes , Camundongos , Proteína Wnt3A
14.
Immunology ; 168(3): 375-388, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36217274

RESUMO

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an essential component of the innate immune system and is central to the identification of abnormal DNA leakage caused by ionising radiation (IR) damage. Cell-intrinsic cGAS-STING initiation has been revealed to have tremendous potential for facilitating interferon synthesis and T-cell priming. Targeting the cGAS-STING axis has been proposed as a strategy to improve radiosensitivity or enhance immunosurveillance. However, due to the complex biology of the irradiated tumour microenvironment and the extensive involvement of the cGAS-STING pathway in various physiological and pathological processes, many defects in this strategy limit the therapeutic effect. Here, we outline the molecular mechanisms by which IR activates the cGAS-STING pathway and analyse the dichotomous roles of the cGAS-STING pathway in modulating cancer immunity after radiotherapy (RT). Then, based on the crosstalk between the cGAS-STING pathway and other signalling events induced by IR, such as necroptosis, autophagy and other cellular effects, we discuss the immunomodulatory actions of the broad cGAS-STING signalling network in RT and their potential therapeutic applications. Finally, recent advances in combination therapeutic strategies targeting cGAS-STING in RT are explored.


Assuntos
Interferons , Neoplasias , Humanos , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , Transdução de Sinais , Imunidade Inata , Microambiente Tumoral
15.
Kidney Int ; 103(3): 501-513, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36328098

RESUMO

Final urine volume and concentration are defined by water reabsorption through the water channel proteins aquaporin (AQP)-2, -3 and -4 in the collecting duct. However, the transcriptional regulation of these AQPs is not well understood. The Hippo/Yes-associated protein 1 (YAP) pathway plays an important role in organ size control and tissue homeostasis. When the Hippo pathway including the Mst1/Mst2 kinases is inhibited, YAP is activated and functions as a transcription co-activator. Our previous work revealed a pathological role of tubular YAP activation in chronic kidney disease, but the physiological role of YAP in the kidney remains to be established. Here, we found that tubule-specific Yap knockout mice showed increased urine output and decreased urinary osmolality. Decreases in Aqp2, -3 and -4 mRNA and protein abundance in the kidney were evident in Yap knockout mice. Analysis of Mst1/Mst2 double knockout and Mst1/Mst2/Yap triple knockout mice showed that expression of Aqp2 and Aqp4 but not Aqp3 was dependent on YAP. Furthermore, YAP was recruited to the promoters of the Aqp2 and Aqp4 genes and stimulated their transcription. Interestingly, YAP was found to interact with transcription factors GATA2, GATA3 and NFATc1. These three factors promoted Aqp2 transcription in a YAP dependent manner in collecting duct cells. These three factors also promoted Aqp4 transcription whereas only GATA2 and GATA3 enhanced Aqp3 transcription. Thus, our results suggest that YAP promotes Aqp2 and Aqp4 transcription, interacts with GATA2, GATA3 and NFATc1 to control Aqp2 expression, while Aqp-2, -3 and -4 exploit overlapping mechanisms for their baseline transcriptional regulation.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Camundongos , Animais , Aquaporina 2/metabolismo , Proteínas de Sinalização YAP , Rim/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Camundongos Knockout , Água/metabolismo , Homeostase , Túbulos Renais Coletores/metabolismo
16.
J Bioenerg Biomembr ; 55(2): 103-114, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046136

RESUMO

Endothelial dysfunction is a key early link in the pathogenesis of atherosclerosis, and the accumulation of senescent vascular endothelial cells causes endothelial dysfunction. Phosphoenolpyruvate (PEP), which is a high-energy glycolytic intermediate, protects against ischemia-reperfusion injury in isolated rat lung, heart, and liver tissue by quickly providing ATP. However, it was reported that serum PEP concentrations are 13-fold higher in healthy elderly compare to the young. Unlike that of other cell types, the energy required for the physiological function of endothelial cells is mainly derived from glycolysis. Recently, it is unclear whether circulating accumulation of PEP affects endothelial cell function. In this study, we found for the first time that 50-250 µM of PEP significantly promoted THP-1 monocyte adhesion to human umbilical vein endothelial cells (HUVECs) through increased expression of vascular endothelial adhesion factor 1 (VCAM1) and intercellular adhesion factor 1 (ICAM1) in HUVECs. Meanwhile, 50-250 µM of PEP decreased the expression of endothelial nitric oxide synthase (eNOS) and cellular level of nitric oxide (NO) in HUVECs. Moreover, PEP increased levels of ROS, enhanced the numbers of SA-ß-Gal-positive cells and upregulated the expression of cell cycle inhibitors such as p21, p16 and the phosphorylation level of p53 on Ser15, and the expression of proinflammatory factors including TNF-α, IL-1ß, IL-6, IL-8, IL-18 and MCP-1 in HUVECs. Furthermore, PEP increased both oxygen consumption rate (OCR) and glycolysis rate, and was accompanied by reduced NAD+/NADH ratios and enhanced phosphorylation levels of AMPKα (Thr172), p38 MAPK (T180/Y182) and NF-κB p65 (Ser536) in HUVECs. Notably, PEP had no significant effect on hepG2 cells. In conclusion, these results demonstrated that PEP induced dysfunction and senescence in vascular endothelial cells through stimulation of metabolic reprogramming.


Assuntos
Senescência Celular , Transdução de Sinais , Ratos , Animais , Humanos , Idoso , Células Cultivadas , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia
17.
FASEB J ; 36(2): e22157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032404

RESUMO

Congenital hepatic fibrosis (CHF) is a developmental liver disease that is caused by mutations in genes that encode ciliary proteins and is characterized by bile duct dysplasia and portal fibrosis. Recent work has demonstrated that mutations in ANKS6 can cause CHF due to its role in bile duct development. Here, we report a novel ANKS6 mutation, which was identified in an infant presenting with neonatal jaundice due to underlying biliary abnormalities and liver fibrosis. Molecular analysis revealed that ANKS6 liver pathology is associated with the infiltration of inflammatory macrophages to the periportal fibrotic tissue and ductal epithelium. To further investigate the role of macrophages in CHF pathophysiology, we generated a novel liver-specific Anks6 knockout mouse model. The mutant mice develop biliary abnormalities and rapidly progressing periportal fibrosis reminiscent of human CHF. The development of portal fibrosis in Anks6 KO mice coincided with the accumulation of inflammatory monocytes and macrophages in the mutant liver. Gene expression and flow cytometric analysis demonstrated the preponderance of M1- over M2-like macrophages at the onset of fibrosis. A critical role for macrophages in promoting peribiliary fibrosis was demonstrated by depleting the macrophages with clodronate liposomes which effectively reduced inflammatory gene expression and fibrosis, and ameliorated tissue histology and biliary function in Anks6 KO livers. Together, this study demonstrates that macrophages play an important role in the initiation of liver fibrosis in ANKS6-deficient livers and their therapeutic elimination may provide an avenue to mitigate CHF in patients.


Assuntos
Proteínas de Transporte/metabolismo , Colestase/patologia , Cirrose Hepática/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Animais , Modelos Animais de Doenças , Expressão Gênica/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Fígado/patologia , Cirrose Hepática/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia
18.
Anticancer Drugs ; 34(1): 29-43, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946506

RESUMO

Cisplatin (DDP) resistance limits therapeutic efficacy in patients diagnosed with ovarian cancer. Purvalanol A (Pur) is a novel cyclin-dependent kinase (CDK) inhibitor that has been demonstrated to induce apoptosis in various cancer cells. The present study investigated the effect of the combination treatment of Pur and DDP, and the potential anticancer mechanisms in epithelial ovarian cancer (EOC) cells in vitro and in vivo . We found that Pur enhanced the anti-tumor efficacy of cisplatin in EOC cells. The combination of Pur and DDP had more significant effects on apoptosis induction in EOC cells compared with the individual-treatment groups and the control group. We further demonstrated that the combination of Pur and DDP may trigger apoptosis and autophagy in EOC cells by inducing reactive oxygen species (ROS). And the ROS/Akt/mammalian target of rapamycin signaling pathway as a potential mechanism for the initiation of autophagy induced by combination therapy. Similar results were observed in vivo . These results demonstrated that Pur sensitized the response of EOC cells to cisplatin in vitro and in vivo , reversing the resistance to cisplatin in ovarian cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Neoplasias Ovarianas/patologia , Apoptose , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/patologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
19.
BMC Gastroenterol ; 23(1): 203, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308836

RESUMO

BACKGROUND: Pancreatic endocrine insufficiency is more likely to occur after acute pancreatitis (AP), but the risk factors affecting pancreatic endocrine function remain controversial. Therefore, exploring the incidence and risk factors of fasting hyperglycaemia following first-attack AP is important. METHODS: Data were collected from 311 individuals with first-attack AP without previous diabetes mellitus (DM) or impaired fasting glucose (IFG) history treated in the Renmin Hospital of Wuhan University. Relevant statistical tests were performed. A two-sided p-value < 0.05 was considered statistically significant. RESULTS: The incidence of fasting hyperglycaemia in individuals with first-attack AP was 45.3%. Univariate analysis showed that age (χ2 = 6.27, P = 0.012), aetiology (χ2 = 11.184, P = 0.004), serum total cholesterol (TC) (χ2 = 14.622, P < 0.001), and serum triglyceride (TG) (χ2 = 15.006, P < 0.001) were significantly different between the hyperglycaemia and non-hyperglycaemia groups (P < 0.05). The serum calcium concentration (Z=-2.480, P = 0.013) was significantly different between the two groups (P < 0.05). Multiple logistic regression analysis showed that age- ≥60 years (P < 0.001, OR = 2.631, 95%Cl = 1.529-4.527) and TG ≥ 5.65 mmol/L (P < 0.001, OR = 3.964, 95%Cl = 1.990-7.895) were independent risk factors for fasting hyperglycaemia in individuals with first-attack AP (P < 0.05). CONCLUSIONS: Old age, serum triglycerides, serum total cholesterol, hypocalcaemia, and aetiology are associated with fasting hyperglycaemia following first-attack AP. Age ≥ 60 years and TG ≥ 5.65 mmol/L are independent risk factors for fasting hyperglycaemia following first-attack AP.


Assuntos
Insuficiência Pancreática Exócrina , Hiperglicemia , Pancreatite , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Incidência , Alta do Paciente , Doença Aguda , Fatores de Risco , Jejum , Colesterol
20.
Bioorg Med Chem ; 78: 117153, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621179

RESUMO

Several small-molecule covalent inhibitors of KRASG12C have made breakthrough progress in the treatment of KRAS mutant cancer. However, the clinical application of KRASG12C small-molecule inhibitors may be limited by adaptive resistance. Emerging PROTAC strategy can achieve complementary advantages with small molecule inhibitors and improve anti-tumor efficacy. Based on AMG-510, a series of novel KRASG12C-PROTACs were designed and synthesized. The protein degradation assay showed that PROTACs I-1, II-1, III-2 and IV-1 had binding and degradation ability to KRASG12C. III-2 and IV-1 showed potent inhibitory effect on downstream p-ERK and were more potent than AMG-510. Mechanistic studies demonstrated that PROTACs exerted degradation effects through the ubiquitin-proteasome pathway. Using cell lines sensitive to KRASG12C, anti-proliferative activities of compounds were assessed. PROTACs tested showed overall anti-proliferative activities. Besides,the structure-activity relationships (SARs) of KRASG12C-PROTACs were summarized. These results supported the use of the PROTAC strategy to degrade oncogene KRASG12C and provided clues for structural optimization of KRASG12C-PROTACs.


Assuntos
Neoplasias , Quimera de Direcionamento de Proteólise , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteólise , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA