Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.109
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(17): 3186-3200.e17, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35907403

RESUMO

Upon stress, eukaryotes typically reprogram their translatome through GCN2-mediated phosphorylation of the eukaryotic translation initiation factor, eIF2α, to inhibit general translation initiation while selectively translating essential stress regulators. Unexpectedly, in plants, pattern-triggered immunity (PTI) and response to other environmental stresses occur independently of the GCN2/eIF2α pathway. Here, we show that while PTI induces mRNA decapping to inhibit general translation, defense mRNAs with a purine-rich element ("R-motif") are selectively translated using R-motif as an internal ribosome entry site (IRES). R-motif-dependent translation is executed by poly(A)-binding proteins (PABPs) through preferential association with the PTI-activating eIFiso4G over the repressive eIF4G. Phosphorylation by PTI regulators mitogen-activated protein kinase 3 and 6 (MPK3/6) inhibits eIF4G's activity while enhancing PABP binding to the R-motif and promoting eIFiso4G-mediated defense mRNA translation, establishing a link between PTI signaling and protein synthesis. Given its prevalence in both plants and animals, the PABP/R-motif translation initiation module may have a broader role in reprogramming the stress translatome.


Assuntos
Fator de Iniciação Eucariótico 4G , Proteínas de Ligação a Poli(A) , Animais , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , Purinas , RNA Mensageiro/metabolismo
2.
Cell ; 184(10): 2665-2679.e19, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33882274

RESUMO

The bacterial flagellar motor is a supramolecular protein machine that drives rotation of the flagellum for motility, which is essential for bacterial survival in different environments and a key determinant of pathogenicity. The detailed structure of the flagellar motor remains unknown. Here we present an atomic-resolution cryoelectron microscopy (cryo-EM) structure of the bacterial flagellar motor complexed with the hook, consisting of 175 subunits with a molecular mass of approximately 6.3 MDa. The structure reveals that 10 peptides protruding from the MS ring with the FlgB and FliE subunits mediate torque transmission from the MS ring to the rod and overcome the symmetry mismatch between the rotational and helical structures in the motor. The LP ring contacts the distal rod and applies electrostatic forces to support its rotation and torque transmission to the hook. This work provides detailed molecular insights into the structure, assembly, and torque transmission mechanisms of the flagellar motor.


Assuntos
Flagelos/fisiologia , Flagelos/ultraestrutura , Salmonella typhimurium/fisiologia , Microscopia Crioeletrônica , Conformação Proteica , Torque
3.
Cell ; 173(1): 221-233.e12, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29551271

RESUMO

Tandem zinc finger (ZF) proteins are the largest and most rapidly diverging family of DNA-binding transcription regulators in mammals. ZFP568 represses a transcript of placental-specific insulin like growth factor 2 (Igf2-P0) in mice. ZFP568 binds a 24-base pair sequence-specific element upstream of Igf2-P0 via the eleven-ZF array. Both DNA and protein conformations deviate from the conventional one finger-three bases recognition, with individual ZFs contacting 2, 3, or 4 bases and recognizing thymine on the opposite strand. These interactions arise from a shortened minor groove caused by an AT-rich stretch, suggesting adaptability of ZF arrays to sequence variations. Despite conservation in mammals, mutations at Igf2 and ZFP568 reduce their binding affinity in chimpanzee and humans. Our studies provide important insights into the evolutionary and structural dynamics of ZF-DNA interactions that play a key role in mammalian development and evolution.


Assuntos
DNA/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/química , Humanos , Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Proteínas Nucleares/química , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Pan troglodytes , Filogenia , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
4.
Nat Immunol ; 19(5): 1-7, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662171

RESUMO

The cytokine transforming growth factor-ß (TGF-ß) regulates the development and homeostasis of several tissue-resident macrophage populations, including microglia. TGF-ß is not critical for microglia survival but is required for the maintenance of the microglia-specific homeostatic gene signature1,2. Under defined host conditions, circulating monocytes can compete for the microglial niche and give rise to long-lived monocyte-derived macrophages residing in the central nervous system (CNS)3-5. Whether monocytes require TGF-ß for colonization of the microglial niche and maintenance of CNS integrity is unknown. We found that abrogation of TGF-ß signaling in CX3CR1+ monocyte-derived macrophages led to rapid onset of a progressive and fatal demyelinating motor disease characterized by myelin-laden giant macrophages throughout the spinal cord. Tgfbr2-deficient macrophages were characterized by high expression of genes encoding proteins involved in antigen presentation, inflammation and phagocytosis. TGF-ß is thus crucial for the functional integration of monocytes into the CNS microenvironment.


Assuntos
Encéfalo/imunologia , Doenças Desmielinizantes/imunologia , Macrófagos/patologia , Medula Espinal/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator de Crescimento Transformador beta/metabolismo
5.
Nature ; 616(7955): 199-206, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36922595

RESUMO

In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Ficobilissomas , Porphyridium , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Fotossíntese , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/ultraestrutura , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/ultraestrutura , Ficobilissomas/química , Ficobilissomas/metabolismo , Ficobilissomas/ultraestrutura , Porphyridium/química , Porphyridium/enzimologia , Porphyridium/metabolismo , Porphyridium/ultraestrutura , Microscopia Crioeletrônica , Imagem Individual de Molécula
6.
Nature ; 617(7959): 185-193, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100902

RESUMO

The outer membrane structure is common in Gram-negative bacteria, mitochondria and chloroplasts, and contains outer membrane ß-barrel proteins (OMPs) that are essential interchange portals of materials1-3. All known OMPs share the antiparallel ß-strand topology4, implicating a common evolutionary origin and conserved folding mechanism. Models have been proposed for bacterial ß-barrel assembly machinery (BAM) to initiate OMP folding5,6; however, mechanisms by which BAM proceeds to complete OMP assembly remain unclear. Here we report intermediate structures of BAM assembling an OMP substrate, EspP, demonstrating sequential conformational dynamics of BAM during the late stages of OMP assembly, which is further supported by molecular dynamics simulations. Mutagenic in vitro and in vivo assembly assays reveal functional residues of BamA and EspP for barrel hybridization, closure and release. Our work provides novel insights into the common mechanism of OMP assembly.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Dobramento de Proteína , Especificidade por Substrato
7.
Nature ; 601(7894): 649-654, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34879391

RESUMO

The chloroplast NADH dehydrogenase-like (NDH) complex is composed of at least 29 subunits and has an important role in mediating photosystem I (PSI) cyclic electron transport (CET)1-3. The NDH complex associates with PSI to form the PSI-NDH supercomplex and fulfil its function. Here, we report cryo-electron microscopy structures of a PSI-NDH supercomplex from barley (Hordeum vulgare). The structures reveal that PSI-NDH is composed of two copies of the PSI-light-harvesting complex I (LHCI) subcomplex and one NDH complex. Two monomeric LHCI proteins, Lhca5 and Lhca6, mediate the binding of two PSI complexes to NDH. Ten plant chloroplast-specific NDH subunits are presented and their exact positions as well as their interactions with other subunits in NDH are elucidated. In all, this study provides a structural basis for further investigations on the functions and regulation of PSI-NDH-dependent CET.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo
8.
Genes Dev ; 34(21-22): 1546-1558, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004415

RESUMO

The de novo DNA methyltransferases Dnmt3a and Dnmt3b play crucial roles in developmental and cellular processes. Their enzymatic activities are stimulated by a regulatory protein Dnmt3L (Dnmt3-like) in vitro. However, genetic evidence indicates that Dnmt3L functions predominantly as a regulator of Dnmt3a in germ cells. How Dnmt3a and Dnmt3b activities are regulated during embryonic development and in somatic cells remains largely unknown. Here we show that Dnmt3b3, a catalytically inactive Dnmt3b isoform expressed in differentiated cells, positively regulates de novo methylation by Dnmt3a and Dnmt3b with a preference for Dnmt3b. Dnmt3b3 is equally potent as Dnmt3L in stimulating the activities of Dnmt3a2 and Dnmt3b2 in vitro. Like Dnmt3L, Dnmt3b3 forms a complex with Dnmt3a2 with a stoichiometry of 2:2. However, rescue experiments in Dnmt3a/3b/3l triple-knockout (TKO) mouse embryonic stem cells (mESCs) reveal that Dnmt3b3 prefers Dnmt3b2 over Dnmt3a2 in remethylating genomic sequences. Dnmt3a2, an active isoform that lacks the N-terminal uncharacterized region of Dnmt3a1 including a nuclear localization signal, has very low activity in TKO mESCs, indicating that an accessory protein is absolutely required for its function. Our results suggest that Dnmt3b3 and perhaps similar Dnmt3b isoforms facilitate de novo DNA methylation during embryonic development and in somatic cells.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Isoenzimas/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias , Camundongos , Camundongos Knockout , DNA Metiltransferase 3B
9.
Proc Natl Acad Sci U S A ; 121(35): e2401861121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39167603

RESUMO

Insect developmental transitions are precisely coordinated by ecdysone and juvenile hormone (JH). We previously revealed that accumulated H3K27 trimethylation (H3K27me3) at the locus encoding JH signal transducer Hairy is involved in the larval-pupal transition in insects, but the underlying mechanism remains to be fully defined. Here, we show in Drosophila and Bombyx that Rpd3-mediated H3K27 deacetylation in the prothoracic gland during the last larval instar promotes ecdysone biosynthesis and the larval-pupal transition by enabling H3K27me3 accumulation at the Hairy locus to induce its transcriptional repression. Importantly, we find that the homeodomain transcription factor Schlank acts to switch active H3K27 acetylation (H3K27ac) to repressive H3K27me3 at the Hairy locus by directly binding to the Hairy promoter and then recruiting the histone deacetylase Rpd3 and the histone methyltransferase PRC2 component Su(z)12 through physical interactions. Moreover, Schlank inhibits Hairy transcription to facilitate the larval-pupal transition, and the Schlank signaling cascade is suppressed by JH but regulated in a positive feedback manner by ecdysone. Together, our data uncover that Schlank mediates epigenetic reprogramming of H3K27 modifications in hormone actions during insect developmental transition.


Assuntos
Proteínas de Drosophila , Ecdisona , Regulação da Expressão Gênica no Desenvolvimento , Histonas , Larva , Animais , Histonas/metabolismo , Acetilação , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ecdisona/metabolismo , Larva/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Bombyx/metabolismo , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Hormônios Juvenis/metabolismo , Metilação , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Transdução de Sinais , Pupa/metabolismo , Pupa/crescimento & desenvolvimento , Pupa/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas Repressoras , Fatores de Transcrição Hélice-Alça-Hélice Básicos
10.
PLoS Pathog ; 20(7): e1012376, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39008531

RESUMO

Antimicrobial resistance is an ongoing "one health" challenge of global concern. The acyl-ACP synthetase (termed AasS) of the zoonotic pathogen Vibrio harveyi recycles exogenous fatty acid (eFA), bypassing the requirement of type II fatty acid synthesis (FAS II), a druggable pathway. A growing body of bacterial AasS-type isoenzymes compromises the clinical efficacy of FAS II-directed antimicrobials, like cerulenin. Very recently, an acyl adenylate mimic, C10-AMS, was proposed as a lead compound against AasS activity. However, the underlying mechanism remains poorly understood. Here we present two high-resolution cryo-EM structures of AasS liganded with C10-AMS inhibitor (2.33 Å) and C10-AMP intermediate (2.19 Å) in addition to its apo form (2.53 Å). Apart from our measurements for C10-AMS' Ki value of around 0.6 µM, structural and functional analyses explained how this inhibitor interacts with AasS enzyme. Unlike an open state of AasS, ready for C10-AMP formation, a closed conformation is trapped by the C10-AMS inhibitor. Tight binding of C10-AMS blocks fatty acyl substrate entry, and therefore inhibits AasS action. Additionally, this intermediate analog C10-AMS appears to be a mixed-type AasS inhibitor. In summary, our results provide the proof of principle that inhibiting salvage of eFA by AasS reverses the FAS II bypass. This facilitates the development of next-generation anti-bacterial therapeutics, esp. the dual therapy consisting of C10-AMS scaffold derivatives combined with certain FAS II inhibitors.


Assuntos
Ácidos Graxos , Vibrio , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Vibrio/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Antibacterianos/farmacologia , Microscopia Crioeletrônica , Coenzima A Ligases/metabolismo , Coenzima A Ligases/antagonistas & inibidores , Ácido Graxo Sintase Tipo II/metabolismo , Ácido Graxo Sintase Tipo II/antagonistas & inibidores
11.
J Immunol ; 212(4): 715-722, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149913

RESUMO

Immune checkpoint molecules are promising targets for suppressing the immune response but have received little attention in immune tolerance induction in organ transplantation. In this study, we found that IFN-ß could induce the expression of HLA-E as well as PD-L1 on human renal tubular epithelial cell line HK-2 and renal tissue of the C57BL/6 mouse. The JAK/STAT2 pathway was necessary for this process. Upregulation of both HLA-E and PD-L1 was fully abrogated by the JAK1/2 inhibitor ruxolitinib. Signaling pathway molecules, including STAT1, STAT2, mTOR, Tyk2, and p38 MAPK, were involved in HLA-E and PD-L1 upregulation. IRF7 is the key transcription factor responsible for the activation of HLA-E and PD-L1 promoters. Through screening an epigenetic regulation library, we found a natural compound, bisdemethoxycurcumin, enhanced IFN-ß-induced HLA-E and PD-L1 expression in vitro and in vivo. In PBMC-derived CD56+ NK cells, we found that NKG2A but not PD1 was constitutively expressed, indicating HLA-E/NKG2A as a more potent target to induce tolerance to innate immune cells. Pretreating HK-2 cells by IFN-ß significantly attenuated the degranulation of their coincubated NK cells and protected cells from NK-mediated lysis. In conclusion, IFN-ß pretreatment could activate HLA-E and PD-L1 transcription through the JAK/STAT/IRF7 pathway and then could protect renal tubular epithelial cells from allogeneic immune attack mediated by NK cells.


Assuntos
Antígenos HLA-E , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Humanos , Antígeno B7-H1/metabolismo , Leucócitos Mononucleares , Epigênese Genética , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Células Epiteliais
12.
Mol Cell ; 70(2): 358-370.e4, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29628308

RESUMO

To initiate V(D)J recombination for generating the adaptive immune response of vertebrates, RAG1/2 recombinase cleaves DNA at a pair of recombination signal sequences, the 12- and 23-RSS. We have determined crystal and cryo-EM structures of RAG1/2 with DNA in the pre-reaction and hairpin-forming complexes up to 2.75 Å resolution. Both protein and DNA exhibit structural plasticity and undergo dramatic conformational changes. Coding-flank DNAs extensively rotate, shift, and deform for nicking and hairpin formation. Two intertwined RAG1 subunits crisscross four times between the asymmetric pair of severely bent 12/23-RSS DNAs. Location-sensitive bending of 60° and 150° in 12- and 23-RSS spacers, respectively, must occur for RAG1/2 to capture the nonamers and pair the heptamers for symmetric double-strand breakage. DNA pairing is thus sequence-context dependent and structure specific, which partly explains the "beyond 12/23" restriction. Finally, catalysis in crystallo reveals the process of DNA hairpin formation and its stabilization by interleaved base stacking.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Recombinação V(D)J , Sítios de Ligação , Catálise , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA/genética , DNA/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Células HEK293 , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/ultraestrutura , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
13.
Nucleic Acids Res ; 52(5): 2519-2529, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38321947

RESUMO

The subtle differences in the chemical structures of double-stranded (ds) RNA and DNA lead to significant variations in their biological roles and medical implications, largely due to their distinct biophysical properties, such as bending stiffness. Although it is well known that A-form dsRNA is stiffer than B-form dsDNA under physiological salt conditions, the underlying cause of this difference remains unclear. In this study, we employ high-precision magnetic-tweezer experiments along with molecular dynamics simulations and reveal that the relative bending stiffness between dsRNA and dsDNA is primarily determined by the structure- and salt-concentration-dependent ion distribution around their helical structures. At near-physiological salt conditions, dsRNA shows a sparser ion distribution surrounding its phosphate groups compared to dsDNA, causing its greater stiffness. However, at very high monovalent salt concentrations, phosphate groups in both dsRNA and dsDNA become fully neutralized by excess ions, resulting in a similar intrinsic bending persistence length of approximately 39 nm. This similarity in intrinsic bending stiffness of dsRNA and dsDNA is coupled to the analogous fluctuations in their total groove widths and further coupled to the similar fluctuation of base-pair inclination, despite their distinct A-form and B-form helical structures.


Assuntos
DNA , RNA de Cadeia Dupla , Pareamento de Bases , DNA/química , Conformação de Ácido Nucleico , Fosfatos , RNA de Cadeia Dupla/química , Biologia Molecular/métodos , Simulação de Dinâmica Molecular
14.
PLoS Genet ; 19(1): e1010602, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652497

RESUMO

Silkworm silk gland cells undergo endoreplicating cycle and rapid growth during the larval period, and synthesize massive silk proteins for silk production. In this study, we demonstrated that a binary transgenic CRISPR/Cas9 approach-mediated Fzr mutation in silkworm posterior silk gland (PSG) cells caused an arrest of silk gland growth and a decrease in silk production. Mechanistically, PSG-specific Fzr mutation blocked endoreplication progression by inducing an expression dysregulation of several cyclin proteins and DNA replication-related regulators. Moreover, based on label-free quantitative proteome analysis, we showed in PSG cells that Fzr mutation-induced decrease in the levels of cyclin proteins and silk proteins was likely due to an inhibition of the ribosome biogenesis pathway associated with mRNA translation, and/or an enhance of the ubiquitin-mediated protein degradation pathway. Rbin-1 inhibitor-mediated blocking of ribosomal biogenesis pathway decreased DNA replication in PSG cells and silk production. Altogether, our results reveal that Fzr positively regulates PSG growth and silk production in silkworm by promoting endoreplication and protein synthesis in PSG cells.


Assuntos
Bombyx , Animais , Endorreduplicação , Seda/genética , Biossíntese de Proteínas/genética , Ciclinas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(20): e2218425120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155848

RESUMO

Nucleic acid deformations play important roles in many biological processes. The physical understanding of nucleic acid deformation by environmental stimuli is limited due to the challenge in the precise measurement of RNA and DNA deformations and the complexity of interactions in RNA and DNA. Magnetic tweezers experiments provide an excellent opportunity to precisely measure DNA and RNA twist changes induced by environmental stimuli. In this work, we applied magnetic tweezers to measure double-stranded RNA twist changes induced by salt and temperature changes. We observed RNA unwinds when lowering salt concentration, or increasing temperature. Our molecular dynamics simulations revealed the mechanism: lowering salt concentration or increasing temperature enlarges RNA major groove width, which causes twist decrease through twist-groove coupling. Combining these results with previous results, we found some universality in RNA and DNA deformations induced by three different stimuli: salt change, temperature, and stretching force. For RNA, these stimuli first modify the major groove width, which is transduced into twist change through twist-groove coupling. For DNA, these stimuli first modify diameter, which is transduced into twist change through twist-diameter coupling. Twist-groove coupling and twist-diameter coupling appear to be utilized by protein binding to reduce DNA and RNA deformation energy cost upon protein binding.


Assuntos
DNA , RNA de Cadeia Dupla , Conformação de Ácido Nucleico , Ligação Proteica , Temperatura , DNA/química , Cloreto de Sódio , Cloreto de Sódio na Dieta
16.
Trends Biochem Sci ; 46(3): 175-183, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077363

RESUMO

The leading cause of mutation due to oxidative damage is 8-oxo-2'-deoxyguanosine (8-oxoG) mispairing with adenine (Ade), which can occur in two ways. First, guanine of a G:C DNA base pair can be oxidized. If not repaired in time, DNA polymerases can mispair Ade with 8-oxoG in the template. This 8-oxoG:A can be repaired by enzymes that remove Ade opposite to template 8-oxoG, or 8-oxoG opposite to Cyt. Second, free 8-oxo-dGTP can be misincorporated by DNA polymerases into DNA opposite template Ade. However, there is no known repair activity that removes 8-oxoG opposite to template Ade. We suggest that a major role of N6-methyladenine in mammalian DNA is minimizing incorporation of 8-oxoG opposite to Ade by DNA polymerases following adduct formation.


Assuntos
Reparo do DNA , Guanina , Animais , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo
17.
Cell ; 141(3): 472-82, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20398923

RESUMO

To achieve cell entry, many nonenveloped viruses must transform from a dormant to a primed state. In contrast to the membrane fusion mechanism of enveloped viruses (e.g., influenza virus), this membrane penetration mechanism is poorly understood. Here, using single-particle cryo-electron microscopy, we report a 3.3 A structure of the primed, infectious subvirion particle of aquareovirus. The density map reveals side-chain densities of all types of amino acids (except glycine), enabling construction of a full-atom model of the viral particle. Our structure and biochemical results show that priming involves autocleavage of the membrane penetration protein and suggest that Lys84 and Glu76 may facilitate this autocleavage in a nucleophilic attack. We observe a myristoyl group, covalently linked to the N terminus of the penetration protein and embedded in a hydrophobic pocket. These results suggest a well-orchestrated process of nonenveloped virus entry involving autocleavage of the penetration protein prior to exposure of its membrane-insertion finger.


Assuntos
Reoviridae/metabolismo , Reoviridae/ultraestrutura , Internalização do Vírus , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Temperatura
18.
Nature ; 565(7739): 372-376, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626964

RESUMO

For more than 50 years, the methylation of mammalian actin at histidine 73 has been known to occur1. Despite the pervasiveness of His73 methylation, which we find is conserved in several model animals and plants, its function remains unclear and the enzyme that generates this modification is unknown. Here we identify SET domain protein 3 (SETD3) as the physiological actin His73 methyltransferase. Structural studies reveal that an extensive network of interactions clamps the actin peptide onto the surface of SETD3 to orient His73 correctly within the catalytic pocket and to facilitate methyl transfer. His73 methylation reduces the nucleotide-exchange rate on actin monomers and modestly accelerates the assembly of actin filaments. Mice that lack SETD3 show complete loss of actin His73 methylation in several tissues, and quantitative proteomics analysis shows that actin His73 methylation is the only detectable physiological substrate of SETD3. SETD3-deficient female mice have severely decreased litter sizes owing to primary maternal dystocia that is refractory to ecbolic induction agents. Furthermore, depletion of SETD3 impairs signal-induced contraction in primary human uterine smooth muscle cells. Together, our results identify a mammalian histidine methyltransferase and uncover a pivotal role for SETD3 and actin His73 methylation in the regulation of smooth muscle contractility. Our data also support the broader hypothesis that protein histidine methylation acts as a common regulatory mechanism.


Assuntos
Actinas/química , Actinas/metabolismo , Distocia/enzimologia , Distocia/prevenção & controle , Histidina/química , Histidina/metabolismo , Metiltransferases/metabolismo , Animais , Linhagem Celular , Feminino , Histona Metiltransferases , Histonas , Tamanho da Ninhada de Vivíparos/genética , Masculino , Metilação , Metiltransferases/deficiência , Metiltransferases/genética , Camundongos , Modelos Moleculares , Músculo Liso/citologia , Músculo Liso/fisiologia , Gravidez , Proteômica , Contração Uterina , Útero/citologia , Útero/fisiologia
19.
Mol Cell ; 66(5): 711-720.e3, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28529057

RESUMO

The multidomain CCCTC-binding factor (CTCF), containing a tandem array of 11 zinc fingers (ZFs), modulates the three-dimensional organization of chromatin. We crystallized the human CTCF DNA-binding domain in complex with a known CTCF-binding site. While ZF2 does not make sequence-specific contacts, each finger of ZF3-7 contacts three bases of the 15-bp consensus sequence. Each conserved nucleotide makes base-specific hydrogen bonds with a particular residue. Most of the variable base pairs within the core sequence also engage in interactions with the protein. These interactions compensate for deviations from the consensus sequence, allowing CTCF to adapt to sequence variations. CTCF is sensitive to cytosine methylation at position 2, but insensitive at position 12 of the 15-bp core sequence. These differences can be rationalized structurally. Although included in crystallizations, ZF10 and ZF11 are not visible, while ZF8 and ZF9 span the backbone of the DNA duplex, conferring no sequence specificity but adding to overall binding stability.


Assuntos
Metilação de DNA , DNA/metabolismo , Proteínas Repressoras/metabolismo , 5-Metilcitosina/metabolismo , Sítios de Ligação , Fator de Ligação a CCCTC , Clonagem Molecular , Cristalografia por Raios X , DNA/química , DNA/genética , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Relação Estrutura-Atividade , Repetições de Trinucleotídeos , Dedos de Zinco
20.
Nucleic Acids Res ; 51(16): 8447-8462, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37439339

RESUMO

The CCCTC-binding factor (CTCF) binds tens of thousands of enhancers and promoters on mammalian chromosomes by means of its 11 tandem zinc finger (ZF) DNA-binding domain. In addition to the 12-15-bp CORE sequence, some of the CTCF binding sites contain 5' upstream and/or 3' downstream motifs. Here, we describe two structures for overlapping portions of human CTCF, respectively, including ZF1-ZF7 and ZF3-ZF11 in complex with DNA that incorporates the CORE sequence together with either 3' downstream or 5' upstream motifs. Like conventional tandem ZF array proteins, ZF1-ZF7 follow the right-handed twist of the DNA, with each finger occupying and recognizing one triplet of three base pairs in the DNA major groove. ZF8 plays a unique role, acting as a spacer across the DNA minor groove and positioning ZF9-ZF11 to make cross-strand contacts with DNA. We ascribe the difference between the two subgroups of ZF1-ZF7 and ZF8-ZF11 to residues at the two positions -6 and -5 within each finger, with small residues for ZF1-ZF7 and bulkier and polar/charged residues for ZF8-ZF11. ZF8 is also uniquely rich in basic amino acids, which allows salt bridges to DNA phosphates in the minor groove. Highly specific arginine-guanine and glutamine-adenine interactions, used to recognize G:C or A:T base pairs at conventional base-interacting positions of ZFs, also apply to the cross-strand interactions adopted by ZF9-ZF11. The differences between ZF1-ZF7 and ZF8-ZF11 can be rationalized structurally and may contribute to recognition of high-affinity CTCF binding sites.


Assuntos
DNA , Dedos de Zinco , Animais , Humanos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , DNA/química , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA