Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2310771121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709917

RESUMO

Shifts in the hydrogen stable isotopic composition (2H/1H ratio) of lipids relative to water (lipid/water 2H-fractionation) at natural abundances reflect different sources of the central cellular reductant, NADPH, in bacteria. Here, we demonstrate that lipid/water 2H-fractionation (2εfattyacid/water) can also constrain the relative importance of key NADPH pathways in eukaryotes. We used the metabolically flexible yeast Saccharomyces cerevisiae, a microbial model for respiratory and fermentative metabolism in industry and medicine, to investigate 2εfattyacid/water. In chemostats, fatty acids from glycerol-respiring cells were >550‰ 2H-enriched compared to those from cells aerobically fermenting sugars via overflow metabolism, a hallmark feature in cancer. Faster growth decreased 2H/1H ratios, particularly in glycerol-respiring cells by 200‰. Variations in the activities and kinetic isotope effects among NADP+-reducing enzymes indicate cytosolic NADPH supply as the primary control on 2εfattyacid/water. Contributions of cytosolic isocitrate dehydrogenase (cIDH) to NAPDH production drive large 2H-enrichments with substrate metabolism (cIDH is absent during fermentation but contributes up to 20 percent NAPDH during respiration) and slower growth on glycerol (11 percent more NADPH from cIDH). Shifts in NADPH demand associated with cellular lipid abundance explain smaller 2εfattyacid/water variations (<30‰) with growth rate during fermentation. Consistent with these results, tests of murine liver cells had 2H-enriched lipids from slower-growing, healthy respiring cells relative to fast-growing, fermenting hepatocellular carcinoma. Our findings point to the broad potential of lipid 2H/1H ratios as a passive natural tracker of eukaryotic metabolism with applications to distinguish health and disease, complementing studies that rely on complex isotope-tracer addition methods.


Assuntos
Ácidos Graxos , Fermentação , NADP , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , NADP/metabolismo , Aerobiose , Deutério/metabolismo , Humanos , Glicerol/metabolismo , Isocitrato Desidrogenase/metabolismo
2.
J Am Chem Soc ; 146(26): 17956-17963, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38850552

RESUMO

Conjugation between three-dimensional (3D) carboranes and the attached substituents is commonly believed to be very weak. In this paper, we report that reducing 1,12-bis(BMes2)-p-carborane (B2pCab) with one electron gives a radical anion with a centrosymmetric semiquinoidal structure. This radical anion shows extensive electron delocalization between the two boron centers over the p-carborane bridge due to the overlap of carborane lowest unoccupied molecular orbital (LUMO) and the BMes2 LUMO. Unlike dianions of other C2B10H12 carboranes, which rearrange to a nido-form, two-electron reduction of B2pCab leads to a rearrangement into a basket-shaped intermediate.

3.
Chemistry ; 30(35): e202401246, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38630894

RESUMO

A thorough understanding of the internal conversion process between excited states is important for the designing of ideal multiple-emissive materials. However, it is hard to experimentally measure both the energy barriers and gaps between the excited states of a compound. For a long time, it is dubious if what was measured is the energy gap or barrier between two excited states. In this paper, we designed 1-(pyren-2'-yl)-9,12-di(p-tolyl)-o-carborane (2), which shows dual-emission in solution. Temperature-dependent fluorescence measurements show that the two emission bands in hexane are corresponding to two different excited states. The ratio of the emission bands is controlled by thermodynamics at higher temperatures and by kinetics at lower temperatures. Thus, the energy barrier and energy gaps between the two excited states of 2 can be experimentally estimated.

4.
BMC Anesthesiol ; 24(1): 42, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291398

RESUMO

OBJECTIVE: To investigate the improvement of perioperative sleep quality and neurocognitive impairment in elderly patients under general anesthesia by nasal administration of dexmedetomidine. METHODS: One hundred and twenty patients admitted to our hospital for various laparoscopic elective gynecological surgeries lasting more than 1 h under general anesthesia from July 2021 to March 2023 were selected. All subjects were divided into 3 groups according to the random number table method. From 21:00 to 21:30 every night from one day before to 5 days after surgery, group A was given alprazolam 0.4 mg orally; group B was given dexmedetomidine 1.5ug/kg nasal drip; group C was given saline nasal drip. All subjects were observed for general information, sleep quality, postoperative cognitive function, anxiety status, sleep quality, adverse effects and complication occurrence. RESULTS: The difference in general information between the three groups was not statistically significant, P > 0.05; the sleep quality scores of the three groups on admission were not statistically significant, P > 0.05. At the Preoperative 1d, postoperative 1d, 3d and 5d, the RCSQ scores of the subjects in group A and group B were higher than those in groups C, and with the postoperative RCSQ scores of subjects in group B were higher as the time increased; the assessment of anxiety status in the three groups 1d before surgery was not statistically significant, P > 0.05. The cognitive function scores of subjects in the three groups were not statistically significant in the preoperative 1d, P > 0.05. The postoperative 1d (24.63 ± 2.23), 3d (25.83 ± 2.53), and 5d (26.15 ± 2.01) scores of the subjects in group B were higher than those in groups A and C (P < 0.05), and the subjects in group B had better recovery of postoperative cognitive function with increasing time; the occurrence of postoperative delirium (POD) in group B (12.5%) were lower on postoperative 5d than those in groups A (37.5%) and C (32.5%) (P < 0.05). There was no statistical significance in the evaluation of anxiety state of the three groups on the first day before operation (P > 0.05). The scores in group B were lower than those in group C on the postoperative 1d, 3d, 5 d (P < 0.05). The overall incidence of adverse reactions and complications in subjects in group B was 17.5% significantly lower than that in groups A and C (P < 0.05). CONCLUSION: Dexmedetomidine can effectively improve the sleep disorder of elderly general anesthesia patients, reduce the damage to their neurocognitive function and the occurrence of POD, effectively reduce the anxiety of patients and the occurrence of adverse reactions and complications, and has better sedative, improve postoperative cognitive function and anti-anxiety effects, with a high drug safety, worthy of clinical application and promotion.


Assuntos
Dexmedetomidina , Humanos , Idoso , Qualidade do Sono , Administração Intranasal , Hipnóticos e Sedativos , Anestesia Geral
5.
Oral Dis ; 29(1): 51-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34716963

RESUMO

Liquid biopsy is a method sampled from body fluids, such as blood, saliva, urine, pleural effusion, cerebrospinal fluid, and so on. It is minimally invasive and reproducible and therefore can build a dynamic, real-time monitoring of oral squamous cell carcinoma patient's conditions and treatment responses. Circulating tumor cells, circulating tumor DNA and exosomes are three main detection objects of liquid biopsy, having different detection methods and features involving cost, sensitivity, specificity and output. Blood and saliva are the options of liquid biopsy in oral cancer. Then we reviewed the studies of liquid biopsy in oral cancer, integrating multiomics analysis of these results. The multiomics analysis of genomics, transcriptomics, proteomics, metabolomics, and DNA methylation have shown potential for the early screening, diagnosis, staging, prognosis, personalized medicine therapy, and monitoring of recurrence (minimal residual disease). Besides, we concluded some problems to be solved, such as the lack of the standard of the measurement methods and procedures of samples, the insufficient connection among different omics, and how to improve the sensitivity and specificity. And we also put up rough assumptions to these problems. However, the analysis of multiomics of liquid biopsy in oral cancer still shows great clinical value in the diagnosis and treatment of oral squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Multiômica , Biomarcadores Tumorais/genética , Biópsia Líquida/métodos
6.
J Biol Chem ; 297(3): 101058, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375639

RESUMO

Mitochondrial biogenesis and energy metabolism are essential for regulating the inflammatory state of monocytes. This state is partially controlled by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a coactivator that regulates mitochondrial biogenesis and energy metabolism. Disruption of these processes can also contribute to the initiation of chronic inflammatory diseases, such as pulmonary fibrosis, atherosclerosis, and rheumatoid arthritis. Methyltransferase-like 3 (METTL3)-dependent N6-methyladenosine (m6A) methylation has recently been shown to regulate a variety of inflammatory processes. However, the role of m6A mRNA methylation in affecting mitochondrial metabolism in monocytes under inflammation is unclear, nor is there an established relationship between m6A methylation and PGC-1α. In this study, we identified a novel mechanism by which METTL3 acts during oxidized low-density lipoprotein (oxLDL)-induced monocyte inflammation, where METTL3 and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) cooperatively modify PGC-1α mRNA, mediating its degradation, decreasing PGC-1α protein levels, and thereby enhancing the inflammatory response. METTL3 coordinated with YTHDF2 to suppress the expression of PGC-1α, as well as that of cytochrome c (CYCS) and NADH:ubiquinone oxidoreductase subunit C2 (NDUFC2) and reduced ATP production and oxygen consumption rate (OCR). This subsequently increased the accumulation of cellular and mitochondrial reactive oxygen species (ROS) and the levels of proinflammatory cytokines in inflammatory monocytes. These data may provide new insights into the role of METTL3-dependent m6A modification of PGC-1α mRNA in the monocyte inflammation response. These data also contribute to a more comprehensive understanding of the pathogenesis of monocyte-macrophage inflammation-associated diseases, such as pulmonary fibrosis, atherosclerosis, and rheumatoid arthritis.


Assuntos
Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Monócitos/imunologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Inflamação/genética , Inflamação/imunologia , Metiltransferases/genética , Mitocôndrias/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
BMC Cancer ; 22(1): 1239, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36451110

RESUMO

BACKGROUND: Sorafenib is a multi-kinase inhibitor that shows antitumor activity in advanced hepatocellular carcinoma. Sorafenib exerts a regulatory effect on immune cells, including T cells, natural killer cells and dendritic cells. Studies have shown that plasmacytoid dendritic cells (pDCs) are functionally impaired in cancer tissues or produce low type I interferon alpha (IFNα) in cancer microenvironments. However, the effects of sorafenib on the function of pDCs have not been evaluated in detail. METHODS: Normal and patient PBMCs were stimulated with CpG-A to evaluate IFNα production with Flow cytometry and ELISA. RESULT: We analyzed the production of IFNα by PBMCs in patients with advanced HCC under sorafenib treatment. We found that sorafenib-treated HCC patients produced less IFNα than untreated patients. Furthermore, we demonstrated that sorafenib suppressed the production of IFNα by PBMCs or pDCs from heathy donors in a concentration-dependent manner. CONCLUSION: Sorafenib suppressed pDCs function. Given that sorafenib is a currently recommended targeted therapeutic agent against cancer, our results suggest that its immunosuppressive effect on pDCs should be considered during treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Células Dendríticas , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Anticorpos , Microambiente Tumoral
8.
Langmuir ; 38(10): 3265-3275, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245423

RESUMO

Environmentally persistent free radicals (EPFRs) have been recognized as one of the important emerging contaminants with biological toxicity, environmental persistence, and global mobility. Previous studies have identified the catalytic role of surface metal oxides in EPFRs formation and illustrated the metal-dependence of EPFRs by studying on various metal oxide nanoparticles and single crystals. However, there is still lack of an understanding on the formation of EPFRs from the point of view of metal sites. Various factors (e.g., crystalline phases and surface species) of metal oxides are regarded to contribute to the generation of EPFRs, which present profound difficulties for scientists to tease apart the impact of metal type. Herein, a laboratory investigation, in terms of the acidity and oxidation strength of metal cations, was conducted by selecting metal-variable isostructural metal-organic frameworks as material platforms. Specifically, we evaluated EPFRs generation on MIL-100(M) (M = Al, Cr, Fe) from chlorine-substituted phenol vapor and catechol under thermal conditions. It is found that high Lewis acidity of metal sites is crucial for capturing the above two phenolic precursors, activating the O-H bond and promoting EPFRs formation. Radical species with half-life as long as 70 days were generated on MIL-100 rich in 5-fold coordinated Al3+ sites. The unpaired electron spin density donation was further confirmed by using 27Al solid-state nuclear magnetic resonance spectroscopy. Despite their higher oxidation power than Al3+, the exposed Cr3+ and Fe3+ sites show undetectable catalytic activity for the formation of EPFRs, because of their insufficient Lewis acidity. Our results suggest that the surface species rather than Lewis acid sites may be a major contributor to the formation of EPFRs on metal oxides like Fe2O3.


Assuntos
Estruturas Metalorgânicas , Radicais Livres/química , Metais , Óxidos , Fenol
9.
Chem Rev ; 120(12): 5308-5351, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32530264

RESUMO

Nitrogen (N) is used in many of life's fundamental biomolecules, and it is also a participant in environmental redox chemistry. Biogeochemical processes control the amount and form of N available to organisms ("fixed" N). These interacting processes result in N acting as the proximate limiting nutrient in most surface environments. Here, we review the global biogeochemical cycle of N and its anthropogenic perturbation. We introduce important reservoirs and processes affecting N in the environment, focusing on the ocean, in which N cycling is more generalizable than in terrestrial systems, which are more heterogeneous. Particular attention is given to processes that create and destroy fixed N because these comprise the fixed N input/output budget, the most universal control on environmental N availability. We discuss preindustrial N budgets for terrestrial and marine systems and their modern-day alteration by N inputs from human activities. We summarize evidence indicating that the simultaneous roles of N as a required biomass constituent and an environmental redox intermediate lead to stabilizing feedbacks that tend to blunt the impact of N cycle perturbations at larger spatiotemporal scales, particularly in marine systems. As a result of these feedbacks, the anthropogenic "N problem" is distinct from the "carbon dioxide problem" in being more local and less global, more immediate and less persistent.


Assuntos
Nitrogênio/metabolismo , Nitrogenase/metabolismo , Biomassa , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Humanos , Nitrogênio/química , Ciclo do Nitrogênio , Nitrogenase/química , Oxirredução
10.
Metab Brain Dis ; 37(8): 2903-2914, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070047

RESUMO

Kaixinsan powder (KXS), a classic prescription of traditional Chinese Medicine (TCM), is widely used in the treatment of depression, but its mechanism remains unclear. The network pharmacology method was used to constructe the "herb-component-target" network, and elucidated KXS potential mechanisms of action in the treatment of depression. Moreover, molecular docking was applied to valid the important interactions between the ingredients and the target protein. The "herb-component-target" network indicated that the ingredients of Girinimbin, Gomisin B and Asarone, and the protein targets of ESR, AR and NR3C1 mostly contribute to the antidepressant effect of KXS. KEGG pathway analysis highlighted the most significant pathways associated with depression treatment, including neuroactive ligand-receptor interaction pathway, serotonergic synapse pathway, PI3K-Akt signaling pathway and MAPK signaling pathway. Go enrichment analysis indicated that the mechanism of KXS in treating depression was involved in the biological process of GPCR signal transduction, hormone metabolism and nerve cell apoptosis. Moreover, molecular docking results showed that Polygalaxanthone III, Girinimbine and Pachymic acid performed greater binding ability with key antidepressant target 5-HTR. In conclusion, this study preliminarily revealed key active components in KXS, including Gomisin B, Asarone, Ginsenoside Rg1, Polygalaxanthone III and Pachymic acid, could interact with multiple targets (5-HTR, DR, ADRA, AR, ESR, NR3C1) and modulate the activation of multiple pathways (Neuroactive ligand -receptor interaction pathway, serotonergic synapse pathway, PI3K-Akt signaling pathway and MAPK signaling pathway).


Assuntos
Depressão , Fosfatidilinositol 3-Quinases , Pós , Simulação de Acoplamento Molecular , Depressão/tratamento farmacológico , Ligantes , Proteínas Proto-Oncogênicas c-akt , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
11.
Proc Natl Acad Sci U S A ; 116(49): 24682-24688, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31727845

RESUMO

Biological nitrogen fixation (BNF) by microorganisms associated with cryptogamic covers, such as cyanolichens and bryophytes, is a primary source of fixed nitrogen in pristine, high-latitude ecosystems. On land, low molybdenum (Mo) availability has been shown to limit BNF by the most common form of nitrogenase (Nase), which requires Mo in its active site. Vanadium (V) and iron-only Nases have been suggested as viable alternatives to countering Mo limitation of BNF; however, field data supporting this long-standing hypothesis have been lacking. Here, we elucidate the contribution of vanadium nitrogenase (V-Nase) to BNF by cyanolichens across a 600-km latitudinal transect in eastern boreal forests of North America. Widespread V-Nase activity was detected (∼15-50% of total BNF rates), with most of the activity found in the northern part of the transect. We observed a 3-fold increase of V-Nase contribution during the 20-wk growing season. By including the contribution of V-Nase to BNF, estimates of new N input by cyanolichens increase by up to 30%. We find that variability in V-based BNF is strongly related to Mo availability, and we identify a Mo threshold of ∼250 ng·glichen-1 for the onset of V-based BNF. Our results provide compelling ecosystem-scale evidence for the use of the V-Nase as a surrogate enzyme that contributes to BNF when Mo is limiting. Given widespread findings of terrestrial Mo limitation, including the carbon-rich circumboreal belt where global change is most rapid, additional consideration of V-based BNF is required in experimental and modeling studies of terrestrial biogeochemistry.


Assuntos
Proteínas de Bactérias/metabolismo , Líquens/microbiologia , Fixação de Nitrogênio/fisiologia , Nitrogenase/metabolismo , Nostoc/enzimologia , Atmosfera/análise , Canadá , Carbono/metabolismo , Ciclo do Carbono , Florestas , Líquens/metabolismo , Molibdênio/análise , Molibdênio/metabolismo , Solo/química , Simbiose , Taiga , Estados Unidos , Vanádio/análise , Vanádio/metabolismo
12.
Glob Chang Biol ; 27(22): 5831-5847, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34409684

RESUMO

Methane (CH4 ), a potent greenhouse gas, is the second most important greenhouse gas contributor to climate change after carbon dioxide (CO2 ). The biological emissions of CH4 from wetlands are a major uncertainty in CH4 budgets. Microbial methanogenesis by Archaea is an anaerobic process accounting for most biological CH4 production in nature, yet recent observations indicate that large emissions can originate from oxygenated or frequently oxygenated wetland soil layers. To determine how oxygen (O2 ) can stimulate CH4 emissions, we used incubations of Sphagnum peat to demonstrate that the temporary exposure of peat to O2 can increase CH4 yields up to 2000-fold during subsequent anoxic conditions relative to peat without O2 exposure. Geochemical (including ion cyclotron resonance mass spectrometry, X-ray absorbance spectroscopy) and microbiome (16S rDNA amplicons, metagenomics) analyses of peat showed that higher CH4 yields of redox-oscillated peat were due to functional shifts in the peat microbiome arising during redox oscillation that enhanced peat carbon (C) degradation. Novosphingobium species with O2 -dependent aromatic oxygenase genes increased greatly in relative abundance during the oxygenation period in redox-oscillated peat compared to anoxic controls. Acidobacteria species were particularly important for anaerobic processing of peat C, including in the production of methanogenic substrates H2 and CO2 . Higher CO2 production during the anoxic phase of redox-oscillated peat stimulated hydrogenotrophic CH4 production by Methanobacterium species. The persistence of reduced iron (Fe(II)) during prolonged oxygenation in redox-oscillated peat may further enhance C degradation through abiotic mechanisms (e.g., Fenton reactions). The results indicate that specific functional shifts in the peat microbiome underlie O2 enhancement of CH4 production in acidic, Sphagnum-rich wetland soils. They also imply that understanding microbial dynamics spanning temporal and spatial redox transitions in peatlands is critical for constraining CH4 budgets; predicting feedbacks between climate change, hydrologic variability, and wetland CH4 emissions; and guiding wetland C management strategies.


Assuntos
Oxigênio , Áreas Alagadas , Dióxido de Carbono/análise , Metano , Solo
13.
Environ Microbiol ; 22(4): 1397-1408, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32090445

RESUMO

Biological nitrogen fixation is catalyzed by the molybdenum (Mo), vanadium (V) and iron (Fe)-only nitrogenase metalloenzymes. Studies with purified enzymes have found that the 'alternative' V- and Fe-nitrogenases generally reduce N2 more slowly and produce more byproduct H2 than the Mo-nitrogenase, leading to an assumption that their usage results in slower growth. Here we show that, in the metabolically versatile photoheterotroph Rhodopseudomonas palustris, the type of carbon substrate influences the relative rates of diazotrophic growth based on different nitrogenase isoforms. The V-nitrogenase supports growth as fast as the Mo-nitrogenase on acetate but not on the more oxidized substrate succinate. Our data suggest that this is due to insufficient electron flux to the V-nitrogenase isoform on succinate compared with acetate. Despite slightly faster growth based on the V-nitrogenase on acetate, the wild-type strain uses exclusively the Mo-nitrogenase on both carbon substrates. Notably, the differences in H2 :N2 stoichiometry by alternative nitrogenases (~1.5 for V-nitrogenase, ~4-7 for Fe-nitrogenase) and Mo-nitrogenase (~1) measured here are lower than prior in vitro estimates. These results indicate that the metabolic costs of V-based nitrogen fixation could be less significant for growth than previously assumed, helping explain why alternative nitrogenase genes persist in diverse diazotroph lineages and are broadly distributed in the environment.


Assuntos
Carbono/metabolismo , Fixação de Nitrogênio , Nitrogenase/metabolismo , Rodopseudomonas/metabolismo , Ferro/metabolismo , Molibdênio/metabolismo , Nitrogênio/metabolismo , Oxirredução , Rodopseudomonas/enzimologia , Rodopseudomonas/crescimento & desenvolvimento , Vanádio/metabolismo
14.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709722

RESUMO

Biological nitrogen fixation is catalyzed by the enzyme nitrogenase. Two forms of this metalloenzyme, the vanadium (V)- and iron (Fe)-only nitrogenases, were recently found to reduce small amounts of carbon dioxide (CO2) into the potent greenhouse gas methane (CH4). Here, we report carbon (13C/12C) and hydrogen (2H/1H) stable isotopic compositions and fractionations of methane generated by V- and Fe-only nitrogenases in the metabolically versatile nitrogen fixer Rhodopseudomonas palustris The stable carbon isotope fractionation imparted by both forms of alternative nitrogenase are within the range observed for hydrogenotrophic methanogenesis (13αCO2/CH4 = 1.051 ± 0.002 for V-nitrogenase and 1.055 ± 0.001 for Fe-only nitrogenase; values are means ± standard errors). In contrast, the hydrogen isotope fractionations (2αH2O/CH4 = 2.071 ± 0.014 for V-nitrogenase and 2.078 ± 0.018 for Fe-only nitrogenase) are the largest of any known biogenic or geogenic pathway. The large 2αH2O/CH4 shows that the reaction pathway nitrogenases use to form methane strongly discriminates against 2H, and that 2αH2O/CH4 distinguishes nitrogenase-derived methane from all other known biotic and abiotic sources. These findings on nitrogenase-derived methane will help constrain carbon and nitrogen flows in microbial communities and the role of the alternative nitrogenases in global biogeochemical cycles.IMPORTANCE All forms of life require nitrogen for growth. Many different kinds of microbes living in diverse environments make inert nitrogen gas from the atmosphere bioavailable using a special enzyme, nitrogenase. Nitrogenase has a wide substrate range, and, in addition to producing bioavailable nitrogen, some forms of nitrogenase also produce small amounts of the greenhouse gas methane. This is different from other microbes that produce methane to generate energy. Until now, there was no good way to determine when microbes with nitrogenases are making methane in nature. Here, we present an isotopic fingerprint that allows scientists to distinguish methane from microbes making it for energy versus those making it as a by-product of nitrogen acquisition. With this new fingerprint, it will be possible to improve our understanding of the relationship between methane production and nitrogen acquisition in nature.


Assuntos
Proteínas de Bactérias/metabolismo , Isótopos de Carbono/análise , Deutério/análise , Metano/metabolismo , Nitrogenase/química , Rodopseudomonas/metabolismo , Fracionamento Químico
15.
Cerebellum ; 19(5): 636-644, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32472475

RESUMO

We sought to assess structural and functional patterns of cerebellum in multiple system atrophy (cerebellar type), and investigate the associations of structural and functional cerebellar gray matter abnormalities. We collected magnetic resonance imaging data of 18 patients with multiple system atrophy (cerebellar type) and 18 health control subjects. The gray matter loss across the motor and cognitive cerebellar territories in patients was assessed using voxel-based morphometry. And change in the connectivity between the cerebellum and large-scale cortical networks was assessed using resting-state functional MRI analysis. Furthermore, we assessed the relationship between the extent of cerebellar atrophy and reduced-activation in the cerebellar-cortical and subthalamo-cerebellar functional connectivities. We confirmed the gray matter loss across the motor and cognitive cerebellar territories in patients and found that the extent of cerebellar atrophy was correlated with decreased connectivity between the cerebellum and large-scale cortical networks, including the default, frontal parietal, and sensorimotor networks. The volume reduction in the motor cerebellum was closely associated with the clinical motor severity. A post hoc analysis showed reduced-activation in the subthalamo-cerebellar functional connectivity without the subthalamic nucleus atrophy. These results emphasized significant atrophy in the cerebellar subsystem and its association with the large-scale cortical networks in multiple system atrophy (cerebellar type), which may improve our understanding of the neural pathophysiology mechanisms of disease.


Assuntos
Doenças Cerebelares/fisiopatologia , Cerebelo/fisiopatologia , Substância Cinzenta/patologia , Atrofia de Múltiplos Sistemas/fisiopatologia , Rede Nervosa/patologia , Adulto , Doenças Cerebelares/patologia , Cerebelo/patologia , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/patologia , Vias Neurais/patologia , Vias Neurais/fisiopatologia
16.
Environ Microbiol ; 20(5): 1667-1676, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29473283

RESUMO

Many bacteria produce siderophores to bind and take up Fe(III), an essential trace metal with extremely low solubility in oxygenated environments at circumneutral pH. The purple non-sulfur bacterium Rhodopseudomonas palustris str. CGA009 is a metabolically versatile model organism with high iron requirements that is able to grow under aerobic and anaerobic conditions. Siderophore biosynthesis has been predicted by genomic analysis, however, siderophore structures were not identified. Here, we elucidate the structure of two novel siderophores from R. palustris: rhodopetrobactin A and B. Rhodopetrobactins are structural analogues of the known siderophore petrobactin in which the Fe chelating moieties are conserved, including two 3,4-dihydroxybenzoate and a citrate substructure. In the place of two spermidine linker groups in petrobactin, rhodopetrobactins contain two 4,4'-diaminodibutylamine groups of which one or both are acetylated at the central amine. We analyse siderophore production under different growth modes and show that rhodopetrobactins are produced in response to Fe limitation under aerobic as well as under anaerobic conditions. Evaluation of the chemical characteristics of rhodopetrobactins indicates that they are well suited to support Fe acquisition under variable oxygen and light conditions.


Assuntos
Oxigênio/metabolismo , Rodopseudomonas/metabolismo , Sideróforos/biossíntese , Compostos Férricos/metabolismo , Oxigênio/química , Rodopseudomonas/crescimento & desenvolvimento , Sideróforos/metabolismo
17.
Angew Chem Int Ed Engl ; 57(2): 536-541, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29134779

RESUMO

Microbes use siderophores to access essential iron resources in the environment. Over 500 siderophores are known, but they utilize a small set of common moieties to bind iron. Azotobacter chroococcum expresses iron-rich nitrogenases, with which it reduces N2 . Though an important agricultural inoculant, the structures of its iron-binding molecules remain unknown. Here, the "chelome" of A. chroococcum is examined using small molecule discovery and bioinformatics. The bacterium produces vibrioferrin and amphibactins as well as a novel family of siderophores, the crochelins. Detailed characterization shows that the most abundant member, crochelin A, binds iron in a hexadentate fashion using a new iron-chelating γ-amino acid. Insights into the biosynthesis of crochelins and the mechanism by which iron may be removed upon import of the holo-siderophore are presented. This work expands the repertoire of iron-chelating moieties in microbial siderophores.


Assuntos
Azotobacter/metabolismo , Quelantes de Ferro/química , Fixação de Nitrogênio , Sideróforos/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas/métodos , Estrutura Molecular
19.
New Phytol ; 213(2): 680-689, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27588707

RESUMO

Cryptogamic species and their associated cyanobacteria have attracted the attention of biogeochemists because of their critical roles in the nitrogen cycle through symbiotic and asymbiotic biological fixation of nitrogen (BNF). BNF is mediated by the nitrogenase enzyme, which, in its most common form, requires molybdenum at its active site. Molybdenum has been reported as a limiting nutrient for BNF in many ecosystems, including tropical and temperate forests. Recent studies have suggested that alternative nitrogenases, which use vanadium or iron in place of molybdenum at their active site, might play a more prominent role in natural ecosystems than previously recognized. Here, we studied the occurrence of vanadium, the role of molybdenum availability on vanadium acquisition and the contribution of alternative nitrogenases to BNF in the ubiquitous cyanolichen Peltigera aphthosa s.l. We confirmed the use of the alternative vanadium-based nitrogenase in the Nostoc cyanobiont of these lichens and its substantial contribution to BNF in this organism. We also showed that the acquisition of vanadium is strongly regulated by the abundance of molybdenum. These findings show that alternative nitrogenase can no longer be neglected in natural ecosystems, particularly in molybdenum-limited habitats.


Assuntos
Cianobactérias/metabolismo , Líquens/enzimologia , Líquens/microbiologia , Molibdênio/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogenase/metabolismo , Cianobactérias/efeitos dos fármacos , Análise Discriminante , Poluição Ambiental , Líquens/efeitos dos fármacos , Modelos Lineares , Isótopos de Nitrogênio , Suécia , Simbiose/efeitos dos fármacos , Vanádio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA