Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Plant Physiol ; 194(2): 1041-1058, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772952

RESUMO

In Arabidopsis (Arabidopsis thaliana), stomatal closure mediated by abscisic acid (ABA) is redundantly controlled by ABA receptor family proteins (PYRABACTIN RESISTANCE 1 [PYR1]/PYR1-LIKE [PYLs]) and subclass III SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2 (SnRK2s). Among these proteins, the roles of PYR1, PYL2, and SnRK2.6 are more dominant. A recent discovery showed that ABA-induced accumulation of reactive oxygen species (ROS) in mitochondria promotes stomatal closure. By analyzing stomatal movements in an array of single and higher order mutants, we revealed that the mitochondrial protein VOLTAGE-DEPENDENT ANION CHANNEL 3 (VDAC3) jointly regulates ABA-mediated stomatal closure with a specialized set of PYLs and SnRK2s by affecting cellular and mitochondrial ROS accumulation. VDAC3 interacted with 9 PYLs and all 3 subclass III SnRK2s. Single mutation in VDAC3, PYLs (except PYR1 and PYL2), or SnRK2.2/2.3 had little effect on ABA-mediated stomatal closure. However, knocking out PYR1, PYL1/2/4/8, or SnRK2.2/2.3 in vdac3 mutants resulted in significantly delayed or attenuated ABA-mediated stomatal closure, despite the presence of other PYLs or SnRK2s conferring redundant functions. We found that cellular and mitochondrial accumulation of ROS induced by ABA was altered in vdac3pyl1 mutants. Moreover, H2O2 treatment restored ABA-induced stomatal closure in mutants with decreased stomatal sensitivity to ABA. Our work reveals that VDAC3 ensures redundant control of ABA-mediated stomatal closure by canonical ABA signaling components.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Estômatos de Plantas/metabolismo , Arabidopsis/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Mitocôndrias/metabolismo
2.
Plant Cell ; 34(5): 1890-1911, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35166333

RESUMO

The unique morphology of grass stomata enables rapid responses to environmental changes. Deciphering the basis for these responses is critical for improving food security. We have developed a planta platform of single-nucleus RNA-sequencing by combined fluorescence-activated nuclei flow sorting, and used it to identify cell types in mature and developing stomata from 33,098 nuclei of the maize epidermis-enriched tissues. Guard cells (GCs) and subsidiary cells (SCs) displayed differential expression of genes, besides those encoding transporters, involved in the abscisic acid, CO2, Ca2+, starch metabolism, and blue light signaling pathways, implicating coordinated signal integration in speedy stomatal responses, and of genes affecting cell wall plasticity, implying a more sophisticated relationship between GCs and SCs in stomatal development and dumbbell-shaped guard cell formation. The trajectory of stomatal development identified in young tissues, and by comparison to the bulk RNA-seq data of the MUTE defective mutant in stomatal development, confirmed known features, and shed light on key participants in stomatal development. Our study provides a valuable, comprehensive, and fundamental foundation for further insights into grass stomatal function.


Assuntos
Estômatos de Plantas , Zea mays , Humanos , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Poaceae/genética , Transcriptoma/genética , Zea mays/genética
4.
Plant J ; 115(6): 1699-1715, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300848

RESUMO

Plant architecture, lodging resistance, and yield are closely associated with height. In this paper, we report the identification and characterization of two allelic EMS-induced mutants of Zea mays, xyl-1, and xyl-2 that display dwarf phenotypes. The mutated gene, ZmXYL, encodes an α-xylosidase which functions in releasing xylosyl residue from a ß-1,4-linked glucan chain. Total α-xylosidase activity in the two alleles is significantly decreased compared to wild-type plants. Loss-of-function mutants of ZmXYL resulted in a decreased xylose content, an increased XXXG content in xyloglucan (XyG), and a reduced auxin content. We show that auxin has an antagonistic effect with XXXG in promoting cell divisions within mesocotyl tissue. xyl-1 and xyl-2 were less sensitive to IAA compared to B73. Based on our study, a model is proposed that places XXXG, an oligosaccharide derived from XyG and the substrate of ZmXYL, as having a negative impact on auxin homeostasis resulting in the dwarf phenotypes of the xyl mutants. Our results provide a insight into the roles of oligosaccharides released from plant cell walls as signals in mediating plant growth and development.


Assuntos
Xilosidases , Zea mays , Zea mays/genética , Ácidos Indolacéticos , Oligossacarídeos/química , Plantas/genética
5.
Plant Biotechnol J ; 22(7): 1833-1847, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363812

RESUMO

High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Genoma de Planta/genética , Cromossomos de Plantas/genética , Adaptação Fisiológica/genética , Salvia/genética , Salvia/metabolismo , Antioxidantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Depsídeos/metabolismo , Multiômica
6.
Plant Physiol ; 193(3): 1834-1848, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37403650

RESUMO

Plant metaxylem vessels provide physical support to promote upright growth and the transport of water and nutrients. A detailed characterization of the molecular network controlling metaxylem development is lacking. However, knowledge of the events that regulate metaxylem development could contribute to the development of germplasm with improved yield. In this paper, we screened an EMS-induced B73 mutant library, which covers 92% of maize (Zea mays) genes, to identify drought-sensitive phenotypes. Three mutants were identified, named iqd27-1, iqd27-2, and iqd27-3, and genetic crosses showed that they were allelic to each other. The causal gene in these 3 mutants encodes the IQ domain-containing protein ZmIQD27. Our study showed that defective metaxylem vessel development likely causes the drought sensitivity and abnormal water transport phenotypes in the iqd27 mutants. ZmIQD27 was expressed in the root meristematic zone where secondary cell wall deposition is initiated, and loss-of-function iqd27 mutants exhibited a microtubular arrangement disorder. We propose that association of functional ZmIQD27 with microtubules is essential for correct targeted deposition of the building blocks for secondary cell wall development in maize.


Assuntos
Meristema , Zea mays , Zea mays/metabolismo , Plântula/genética , Secas , Água/metabolismo
7.
Plant Physiol ; 192(2): 945-966, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36718522

RESUMO

Verticillium wilt caused by Verticillium dahliae is a serious vascular disease in cotton (Gossypium spp.). V. dahliae induces the expression of the CAROTENOID CLEAVAGE DIOXYGENASE 7 (GauCCD7) gene involved in strigolactone (SL) biosynthesis in Gossypium australe, suggesting a role for SLs in Verticillium wilt resistance. We found that the SL analog rac-GR24 enhanced while the SL biosynthesis inhibitor TIS108 decreased cotton resistance to Verticillium wilt. Knock-down of GbCCD7 and GbCCD8b genes in island cotton (Gossypium barbadense) decreased resistance, whereas overexpression of GbCCD8b in upland cotton (Gossypium hirsutum) increased resistance to Verticillium wilt. Additionally, Arabidopsis (Arabidopsis thaliana) SL mutants defective in CCD7 and CCD8 putative orthologs were susceptible, whereas both Arabidopsis GbCCD7- and GbCCD8b-overexpressing plants were more resistant to Verticillium wilt than wild-type (WT) plants. Transcriptome analyses showed that several genes related to the jasmonic acid (JA)- and abscisic acid (ABA)-signaling pathways, such as MYELOCYTOMATOSIS 2 (GbMYC2) and ABA-INSENSITIVE 5, respectively, were upregulated in the roots of WT cotton plants in responses to rac-GR24 and V. dahliae infection but downregulated in the roots of both GbCCD7- and GbCCD8b-silenced cotton plants. Furthermore, GbMYC2 suppressed the expression of GbCCD7 and GbCCD8b by binding to their promoters, which might regulate the homeostasis of SLs in cotton through a negative feedback loop. We also found that GbCCD7- and GbCCD8b-silenced cotton plants were impaired in V. dahliae-induced reactive oxygen species (ROS) accumulation. Taken together, our results suggest that SLs positively regulate cotton resistance to Verticillium wilt through crosstalk with the JA- and ABA-signaling pathways and by inducing ROS accumulation.


Assuntos
Arabidopsis , Verticillium , Gossypium/genética , Gossypium/metabolismo , Verticillium/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hormônios/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Nature ; 559(7715): 535-545, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046070

RESUMO

El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño-Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.


Assuntos
El Niño Oscilação Sul , Mudança Climática , Clima Tropical , Movimentos da Água
9.
BMC Med Ethics ; 25(1): 77, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003488

RESUMO

BACKGROUND: Medical research in complementary and alternative medicine (CAM) has increased recently, raising ethical concerns about the moral status of CAM. Medical academic journals are responsible for conducting ethical review (ER) of manuscripts to protect the interests of human subjects and to make ethical results available before deciding to publish. However, there has been no systematic analysis of the ER in CAM journals. This study is aim to evaluate the current status of ethical requirements and compliance in CAM journals. METHODS: This is a cross-sectional study. We reviewed instructions for authors (IFAs) of CAM journals included in the Journal Citation Reports (2021) ( https://jcr.clarivate.com ) for general information and requirements for ER. We also browsed the manuscripts regarding randomized controlled trials published by CAM journals in Q1 and Q2 section from January to June, 2023, to check the actual situation of ethical requirement. Descriptive statistics and Fisher's exact test were used for statistical analysis. RESULTS: 27 journals and 68 manuscripts were ultimately included. 92.6% (25/27) IFAs included keywords of ER, indicating the presence of ethical considerations. However, no specific ER was required for CAM (n = 0). We categorized journals by Geographic origin, JCR section, Year of electronic JCR, Types of studies, % of OA Gold to explore the factors that could influence CAM journals to have certain ethical review policies. The results showed there was no statistical significance in certain ethical review policy in any classification of journals (p > 0.05). All RCT manuscripts included in the study generally met the requirements of the published journals for ethical review. CONCLUSIONS: All IFAs discussed ER, but the content was scattered, unfocused, and there were no specific ER requirements regarding CAM. Although the manuscripts basically met the requirements of the journal, it was not possible to get closer to the process of ER in the manuscript. To ensure full implementation of these policies in the future, CAM journals should require authors to provide more details, or to form a list of items necessary for CAM ethical review.


Assuntos
Terapias Complementares , Políticas Editoriais , Publicações Periódicas como Assunto , Terapias Complementares/ética , Estudos Transversais , Humanos , Publicações Periódicas como Assunto/ética , Revisão Ética , Autoria , Editoração/ética
10.
BMC Genomics ; 24(1): 754, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062379

RESUMO

Bergenia purpurascens is an important medicinal, edible and ornamental plant. It generally grows in high-altitude areas with complex climates. There have been no reports about how B. purpurascens survives under cold stress. Here, the B. purpurascens under low temperature were subjected to transcriptomics analysis to explore the candidate genes and pathways that involved in the cold tolerance of B. purpurascens. Compared with the control treatment, we found 9,600 up-regulated differentially expressed genes (DEGs) and 7,055 down-regulated DEGs. A significant number of DEGs were involved in the Ca2+ signaling pathway, mitogen-activated protein kinase (MAPK) cascade, plant hormone signaling pathway, and lipid metabolism. A total of 400 transcription factors were found to respond to cold stress, most of which belonged to the MYB and AP2/ERF families. Five novel genes were found to be potential candidate genes involved in the cold tolerance of B. purpurascens. The study provide insights into further investigation of the molecular mechanism of how B. purpurascens survives under cold stress.


Assuntos
Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Humanos , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Temperatura Baixa , Transcriptoma
11.
BMC Med ; 21(1): 197, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237266

RESUMO

BACKGROUND: Microvascular complications are associated with an overtly increased risk of adverse outcomes in patients with diabetes including coronary microvascular injury which manifested as disruption of adherens junctions between cardiac microvascular endothelial cells (CMECs). However, particular mechanism leading to diabetic coronary microvascular hyperpermeability remains elusive. METHODS: Experimental diabetes was induced in mice with adipose tissue-specific Adipsin overexpression (AdipsinLSL/LSL-Cre) and their respective control (AdipsinLSL/LSL). In addition, cultured CMECs were subjected to high glucose/palmitic acid (HG + PA) treatment to simulate diabetes for a mechanistic approach. RESULTS: The results showed that Adipsin overexpression significantly reduced cardiac microvascular permeability, preserved coronary microvascular integrity, and increased coronary microvascular density. Adipsin overexpression also attenuated cardiac dysfunction in diabetic mice. E/A ratio, an indicator of cardiac diastolic function, was improved by Adipsin. Adipsin overexpression retarded left ventricular adverse remodeling, enhanced LVEF, and improved cardiac systolic function. Adipsin-enriched exosomes were taken up by CMECs, inhibited CMECs apoptosis, and increased CMECs proliferation under HG + PA treatment. Adipsin-enriched exosomes also accelerated wound healing, rescued cell migration defects, and promoted tube formation in response to HG + PA challenge. Furthermore, Adipsin-enriched exosomes maintained adherens junctions at endothelial cell borders and reversed endothelial hyperpermeability disrupted by HG + PA insult. Mechanistically, Adipsin blocked HG + PA-induced Src phosphorylation (Tyr416), VE-cadherin phosphorylation (Tyr685 and Tyr731), and VE-cadherin internalization, thus maintaining CMECs adherens junctions integrity. LC-MS/MS analysis and co-immunoprecipitation analysis (Co-IP) unveiled Csk as a direct downstream regulator of Adipsin. Csk knockdown increased Src phosphorylation (Tyr416) and VE-cadherin phosphorylation (Tyr685 and Tyr731), while abolishing Adipsin-induced inhibition of VE-cadherin internalization. Furthermore, Csk knockdown counteracted Adipsin-induced protective effects on endothelial hyperpermeability in vitro and endothelial barrier integrity of coronary microvessels in vivo. CONCLUSIONS: Together, these findings favor the vital role of Adipsin in the regulation of CMECs adherens junctions integrity, revealing its promises as a treatment target against diabetic coronary microvascular dysfunction. Graphical abstract depicting the mechanisms of action behind Adipsin-induced regulation of diabetic coronary microvascular dysfunction.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos , Animais , Cardiomiopatias Diabéticas/genética , Diabetes Mellitus Experimental/complicações , Células Endoteliais , Fator D do Complemento/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Células Cultivadas
12.
Theor Appl Genet ; 136(9): 182, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555969

RESUMO

KEY MESSAGE: Here, we revealed maize prolificacy highly correlated with domestication and identified a causal gene ZmEN1 located in one novel QTL qGEN261 that regulating maize prolificacy by using multiple-mapping methods. The development of maize prolificacy (EN) is crucial for enhancing yield and breeding specialty varieties. To achieve this goal, we employed a genome-wide association study (GWAS) to analyze the genetic architecture of EN in maize. Using 492 inbred lines with a wide range of EN variability, our results demonstrated significant differences in genetic, environmental, and interaction effects. The broad-sense heritability (H2) of EN was 0.60. Through GWAS, we identified 527 significant single nucleotide polymorphisms (SNPs), involved 290 quantitative trait loci (QTL) and 806 genes. Of these SNPs, 18 and 509 were classified as major effect loci and minor loci, respectively. In addition, we performed a bulk segregant analysis (BSA) in an F2 population constructed by a few-ears line Zheng58 and a multi-ears line 647. Our BSA results identified one significant QTL, qBEN1. Importantly, combining the GWAS and BSA, four co-located QTL, involving six genes, were identified. Three of them were expressed in vegetative meristem, shoot tip, internode and tip of ear primordium, with ZmEN1, encodes an unknown auxin-like protein, having the highest expression level in these tissues. It suggested that ZmEN1 plays a crucial role in promoting axillary bud and tillering to encourage the formation of prolificacy. Haplotype analysis of ZmEN1 revealed significant differences between different haplotypes, with inbred lines carrying hap6 having more EN. Overall, this is the first report about using GWAS and BSA to dissect the genetic architecture of EN in maize, which can be valuable for breeding specialty maize varieties and improving maize yield.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla/métodos , Zea mays/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único , Fenótipo
13.
Environ Res ; 228: 115912, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068723

RESUMO

Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.


Assuntos
Quitosana , Diabetes Mellitus , Nanopartículas , Nanoestruturas , Humanos , Quitosana/química , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Nanopartículas/química , Polímeros/química , Insulina , Diabetes Mellitus/tratamento farmacológico
14.
Proc Natl Acad Sci U S A ; 117(24): 13308-13313, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482861

RESUMO

Precipitation extremes have implications for many facets of both the human and natural systems, predominantly through flooding events. Observations have demonstrated increasing trends in extreme precipitation in North America, and models and theory consistently suggest continued increases with future warming. Here, we address the question of whether observed changes in annual maximum 1- and 5-d precipitation can be attributed to human influence on the climate. Although attribution has been demonstrated for global and hemispheric scales, there are few results for continental and subcontinental scales. We utilize three large ensembles, including simulations from both a fully coupled Earth system model and a regional climate model. We use two different attribution approaches and find many qualitatively consistent results across different methods, different models, and different regional scales. We conclude that external forcing, dominated by human influence, has contributed to the increase in frequency and intensity of regional precipitation extremes in North America. If human emissions continue to increase, North America will see further increases in these extremes.

15.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902274

RESUMO

Daylily (Hemerocallis citrina Baroni) is an edible plant widely distributed worldwide, especially in Asia. It has traditionally been considered a potential anti-constipation vegetable. This study aimed to investigate the anti-constipation effects of daylily from the perspective of gastro-intestinal transit, defecation parameters, short-chain organic acids, gut microbiome, transcriptomes and network pharmacology. The results show that dried daylily (DHC) intake accelerated the defecation frequency of mice, while it did not significantly alter the levels of short-chain organic acids in the cecum. The 16S rRNA sequencing showed that DHC elevated the abundance of Akkermansia, Bifidobacterium and Flavonifractor, while it reduced the level of pathogens (such as Helicobacter and Vibrio). Furthermore, a transcriptomics analysis revealed 736 differentially expressed genes (DEGs) after DHC treatment, which are mainly enriched in the olfactory transduction pathway. The integration of transcriptomes and network pharmacology revealed seven overlapping targets (Alb, Drd2, Igf2, Pon1, Tshr, Mc2r and Nalcn). A qPCR analysis further showed that DHC reduced the expression of Alb, Pon1 and Cnr1 in the colon of constipated mice. Our findings provide a novel insight into the anti-constipation effects of DHC.


Assuntos
Constipação Intestinal , Hemerocallis , Laxantes , Animais , Camundongos , Constipação Intestinal/terapia , Microbioma Gastrointestinal , Hemerocallis/química , Farmacologia em Rede , RNA Ribossômico 16S , Laxantes/química , Laxantes/farmacologia , Laxantes/uso terapêutico , Ceco/efeitos dos fármacos
16.
J Integr Plant Biol ; 65(1): 133-149, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36194508

RESUMO

Camptothecin (CPT) is an anticancer pentacyclic quinoline alkaloid widely used to treat cancer patients worldwide. However, the biosynthetic pathway and transcriptional regulation of camptothecin are largely unknown. Ophiorrhiza pumila, the herbaceous plant from the Rubiaceae family, has emerged as a model plant for studying camptothecin biosynthesis and regulation. In this study, a high-quality reference genome of O. pumila with estimated size of ~456.90 Mb was reported, and the accumulation level of camptothecin in roots was higher than that in stems and leaves. Based on its spatial distribution in the plant, we examined gene functions and expression by combining genomics with transcriptomic analysis. Two loganic acid O-methyltransferase (OpLAMTs) were identified in strictosidine-producing plant O. pumila, and enzyme catalysis assays showed that OpLAMT1 and not OpLAMT2 could convert loganic acid into loganin. Further knock-out of OpLAMT1 expression led to the elimination of loganin and camptothecin accumulation in O. pumila hairy roots. Four key residues were identified in OpLAMT1 protein crucial for the catalytic activity of loganic acid to loganin. By co-expression network, we identified a NAC transcription factor, OpNAC1, as a candidate gene for regulating camptothecin biosynthesis. Transgenic hairy roots and biochemical assays demonstrated that OpNAC1 suppressed OpLAMT1 expression. Here, we reported on two camptothecin metabolic engineering strategies paving the road for industrial-scale production of camptothecin in CPT-producing plants.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Rubiaceae , Camptotecina/farmacologia , Camptotecina/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antineoplásicos/metabolismo , Plantas/metabolismo , Rubiaceae/genética , Rubiaceae/metabolismo
17.
J Integr Plant Biol ; 65(9): 2122-2137, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37226855

RESUMO

Multicellular organisms such as plants contain various cell types with specialized functions. Analyzing the characteristics of each cell type reveals specific cell functions and enhances our understanding of organization and function at the organismal level. Guard cells (GCs) are specialized epidermal cells that regulate the movement of the stomata and gaseous exchange, and provide a model genetic system for analyzing cell fate, signaling, and function. Several proteomics analyses of GC are available, but these are limited in depth. Here we used enzymatic isolation and flow cytometry to enrich GC and mesophyll cell protoplasts and perform in-depth proteomics in these two major cell types in Arabidopsis leaves. We identified approximately 3,000 proteins not previously found in the GC proteome and more than 600 proteins that may be specific to GC. The depth of our proteomics enabled us to uncover a guard cell-specific kinase cascade whereby Raf15 and Snf1-related kinase2.6 (SnRK2.6)/OST1(open stomata 1) mediate abscisic acid (ABA)-induced stomatal closure. RAF15 directly phosphorylated SnRK2.6/OST1 at the conserved Ser175 residue in its activation loop and was sufficient to reactivate the inactive form of SnRK2.6/OST1. ABA-triggered SnRK2.6/OST1 activation and stomatal closure was impaired in raf15 mutants. We also showed enrichment of enzymes and flavone metabolism in GC, and consistent, dramatic accumulation of flavone metabolites. Our study answers the long-standing question of how ABA activates SnRK2.6/OST1 in GCs and represents a resource potentially providing further insights into the molecular basis of GC and mesophyll cell development, metabolism, structure, and function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Proteômica , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Estômatos de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
18.
J Biol Chem ; 297(4): 101195, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34520760

RESUMO

DNA methylation shows complex correlations with gene expression, and the role of promoter hypermethylation in repressing gene transcription has been well addressed. Emerging evidence indicates that gene body methylation promotes transcription; however, the underlying mechanisms remain to be further investigated. Here, using methylated DNA immunoprecipitation sequencing (MeDIP-seq), bisulfite genomic sequencing, and immunofluorescent labeling, we show that gene body methylation is indeed positively correlated with rRNA gene (rDNA) transcription. Mechanistically, gene body methylation is largely maintained by DNA methyltransferase 1 (DNMT1), deficiency or downregulation of which during myoblast differentiation or nutrient deprivation results in decreased gene body methylation levels, leading to increased gene body occupancy of plant homeodomain (PHD) finger protein 6 (PHF6). PHF6 binds to hypomethylated rDNA gene bodies where it recruits histone methyltransferase SUV4-20H2 to establish the repressive histone modification, H4K20me3, ultimately inhibiting rDNA transcription. These findings demonstrate that DNMT1-mediated gene body methylation safeguards rDNA transcription by preventing enrichment of repressive histone modifications, suggesting that gene body methylation serves to maintain gene expression in response to developmental and/or environmental stresses.


Assuntos
Metilação de DNA , DNA Ribossômico/metabolismo , Histonas/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA Ribossômico/genética , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Humanos , Proteínas Repressoras/genética
19.
New Phytol ; 236(3): 1140-1153, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35637602

RESUMO

Invasive plants can change soil properties resulting in improved growth. Although invaders are known to alter soil chemistry, it remains unclear if chemicals secreted by roots facilitate invasive plant-soil mutualisms. With up to 19 confamilial pairs of invasive and native plants, and most of which were congeners, we explored the root exudate-induced changes in plant-arbuscular mycorrhizal (AM) fungal mutualisms. We found that, relative to natives, invaders had greater AM colonization, greater biomass and their root exudates contained higher concentrations of two common chemical signals - quercetin and strigolactones - which are known to stimulate AM fungal growth and root colonization. An exudate exchange experiment showed that root exudates from invaders increased AM colonization more than exudates from natives. However, application of activated carbon led to greater reduction in AM colonization and plant biomass for invaders than natives, suggesting stronger effects of chemical signals in root exudates from invaders. We show that nonnative plants promote interactions with soil mutualists via enhancing root exudate chemicals, which could have important implications for invasion success.


Assuntos
Micorrizas , Solo , Carvão Vegetal/farmacologia , Exsudatos e Transudatos , Raízes de Plantas/microbiologia , Plantas , Quercetina/farmacologia , Solo/química , Microbiologia do Solo
20.
New Phytol ; 235(3): 885-897, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491444

RESUMO

Salicylic acid (SA) is a key phytohormone regulating plant immunity. Although the transcriptional regulation of SA biosynthesis has been well-studied, its post-translational regulation is largely unknown. We report that a Kelch repeats-containing F-box (KFB) protein, SMALL AND GLOSSY LEAVES 1 (SAGL1), negatively influences SA biosynthesis in Arabidopsis thaliana by mediating the proteolytic turnover of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1), a master transcription factor that directly drives SA biosynthesis during immunity. Loss of SAGL1 resulted in characteristic growth inhibition. Combining metabolomic, transcriptional and phenotypic analyses, we found that SAGL1 represses SA biosynthesis and SA-mediated immune activation. Genetic crosses to mutants that are deficient in SA biosynthesis blocked the SA overaccumulation in sagl1 and rescued its growth. Biochemical and proteomic analysis identified that SAGL1 interacts with SARD1 and promotes the degradation of SARD1 in a proteasome-dependent manner. These results unravelled a critical role of KFB protein SAGL1 in maintaining SA homeostasis via controlling SARD1 stability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Proteômica , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA