Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2207832120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626561

RESUMO

Microorganisms play essential roles in soil ecosystem functioning and maintenance, but methods are currently lacking for quantitative assessments of the mechanisms underlying microbial diversity patterns observed across disparate systems and scales. Here we established a quantitative model to incorporate pH into metabolic theory to capture and explain some of the unexplained variation in the relationship between temperature and soil bacterial diversity. We then tested and validated our newly developed models across multiple scales of ecological organization. At the species level, we modeled the diversification rate of the model bacterium Pseudomonas fluorescens evolving under laboratory media gradients varying in temperature and pH. At the community level, we modeled patterns of bacterial communities in paddy soils across a continental scale, which included natural gradients of pH and temperature. Last, we further extended our model at a global scale by integrating a meta-analysis comprising 870 soils collected worldwide from a wide range of ecosystems. Our results were robust in consistently predicting the distributional patterns of bacterial diversity across soil temperature and pH gradients-with model variation explaining from 7 to 66% of the variation in bacterial diversity, depending on the scale and system complexity. Together, our study represents a nexus point for the integration of soil bacterial diversity and quantitative models with the potential to be used at distinct spatiotemporal scales. By mechanistically representing pH into metabolic theory, our study enhances our capacity to explain and predict the patterns of bacterial diversity and functioning under current or future climate change scenarios.


Assuntos
Ecossistema , Solo , Solo/química , Microbiologia do Solo , Bactérias/genética , Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Biodiversidade
2.
BMC Plant Biol ; 24(1): 32, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183049

RESUMO

BACKGROUND: As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS: In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS: Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.


Assuntos
Gossypium , RNA Circular , Gossypium/genética , RNA Circular/genética , Citoplasma , Fertilidade/genética , RNA , Resposta ao Choque Térmico/genética
3.
BMC Vet Res ; 19(1): 87, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468893

RESUMO

BACKGROUND: Porcine circovirus 2 (PCV-2) is one of the pathogens that leads to a growing and persistent threat in pigs. Thus, the development of serological detection methods for PCV-2 is of great necessity for clinical diagnosis as well as epidemiological investigations. This study aimed to establish an indirect enzyme-linked immunosorbent assay (ELISA) to examine antibodies against PCV-2 based on virus-like particles (VLPs). RESULTS: Recombinant PCV-2 Cap protein was expressed in the baculovirus-insect cells system and PCV-2 VLPs were observed over transmission electron microscopy (TEM). The PCV-2 VLPs were shown to have good immunogenicity in mice and stimulated a high level of PCV-2 antibody titers. Using PCV-2 VLPs as coating antigen, the indirect ELISA can detect PCV-2 antibodies in animals with diagnostic sensitivity and specificity of 98.33% and 93.33% compared to immunofluorescence assay (IFA), respectively. The intra- and inter-assay coefficient variations (CVs) were < 10% in a batch, and < 15% in different batches, indicating good repeatability. There was no cross-reaction of this ELISA with antibodies against other porcine viruses. A total of 170 serum samples collected from different pig farms in China were tested for PCV-2 antibodies, and 151 (88.8%) samples were PCV-2 antibody positive. CONCLUSION: Our findings suggest that this ELISA was rapid, specific, and reproducible and can be used for large-scale serological investigations of PCV-2 antibodies in pigs.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Suínos , Camundongos , Animais , Proteínas do Capsídeo/genética , Circovirus/genética , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas Recombinantes , Baculoviridae/genética , Infecções por Circoviridae/diagnóstico , Infecções por Circoviridae/veterinária
4.
Plant Cell Rep ; 42(11): 1705-1719, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37715064

RESUMO

KEY MESSAGE: Dose effects of Rf1 gene regulated retrieval mechanism of pollen fertility for CMS-D2 cotton. Cytoplasmic male sterility conditioned by Gossypium harknessii cytoplasm (CMS-D2) is an economical pollination control system for producing hybrid cotton seeds compared to artificial and chemical emasculation methods. However, the unstable restoring ability of restorer lines is a main barrier in the large-scale application of "three-line" hybrid cotton in China. Our phenotypic investigation determined that the homozygous Rf1Rf1 allelic genotype had a stronger ability to generate fertile pollen than the heterozygous Rf1rf1 allelic genotype. To decipher the genetic mechanisms that control the differential levels of pollen fertility, an integrated metabolomic and transcriptomic analysis was performed at two environments using pollen grains of four cotton genotypes differing in Rf1 alleles or cytoplasm. Totally 5,391 differential metabolite features were detected, and 369 specific differential metabolites (DMs) were identified between homozygous and heterozygous Rf1 allelic genotypes with CMS-D2 cytoplasm. In addition, transcriptome analysis identified 2,490 differentially expressed genes (DEGs) and 96 unique hub DEGs with dynamic regulation in this comparative combination. Further integrated analyses revealed that several key DEGs and DMs involved in indole biosynthesis, flavonoid biosynthesis, and sugar metabolism had strong network linkage with fertility restoration. In vitro application of auxin analogue NAA and inhibitor Auxinole confirmed that over-activated auxin signaling might inhibit pollen development, whereas suppressing auxin signaling partially promoted pollen development in CMS-D2 cotton. Our results provide new insight into how the dosage effects of the Rf1 gene regulate pollen fertility of CMS-D2 cotton.

5.
Biol Res ; 56(1): 58, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941013

RESUMO

Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.


Assuntos
Fertilidade , MicroRNAs , Temperatura , Citoplasma/genética , Fertilidade/genética , Ácidos Indolacéticos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Hormônios/metabolismo , Pólen/genética , Pólen/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
6.
Nucleic Acids Res ; 49(6): 3204-3216, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675669

RESUMO

Autoactivation of two-component systems (TCSs) can increase the sensitivity to signals but inherently cause a delayed response. Here, we describe a unique negative feedback mechanism enabling the global NtrB/NtrC regulator to rapidly respond to nitrogen starvation over the course of histidine utilization (hut) in Pseudomonas fluorescens. NtrBC directly activates transcription of hut genes, but overexpression will produce excess ammonium leading to NtrBC inactivation. To prevent this from occurring, the histidine-responsive repressor HutC fine-tunes ntrBC autoactivation: HutC and NtrC bind to the same operator site in the ntrBC promoter. This newly discovered low-affinity binding site shows little sequence similarity with the consensus sequence that HutC recognizes for substrate-specific induction of hut operons. A combination of genetic and transcriptomic analysis indicated that both ntrBC and hut promoter activities cannot be stably maintained in the ΔhutC background when histidine fluctuates at high concentrations. Moreover, the global carbon regulator CbrA/CbrB is involved in directly activating hut transcription while de-repressing hut translation via the CbrAB-CrcYZ-Crc/Hfq regulatory cascade. Together, our data reveal that the local transcription factor HutC plays a crucial role in governing NtrBC to maintain carbon/nitrogen homeostasis through the complex interactions between two TCSs (NtrBC and CbrAB) at the hut promoter.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Pseudomonas fluorescens/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Retroalimentação Fisiológica , Histidina/metabolismo , Homeostase , Regiões Promotoras Genéticas , Pseudomonas fluorescens/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Ativação Transcricional
7.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445936

RESUMO

Resolving the genetic basis of fertility restoration for cytoplasmic male sterility (CMS) can improve the efficiency of three-line hybrid breeding. However, the genetic determinants of male fertility restoration in cotton are still largely unknown. This study comprehensively compared the full-length transcripts of CMS-D2 and CMS-D8 systems to identify potential genes linked with fertility restorer genes Rf1 or Rf2. Target comparative analysis revealed a higher percentage of differential genes in each restorer line as compared to their corresponding sterile and maintainer lines. An array of genes with specific expression in the restorer line of CMS-D2 had functional annotations related to floral development and pathway enrichments in various secondary metabolites, while specifically expressed genes in the CMS-D8 restorer line showed functional annotations related to anther development and pathway enrichment in the biosynthesis of secondary metabolites. Further analysis identified potentially key genes located in the target region of fertility restorer genes Rf1 or Rf2. In particular, Ghir_D05G032450 can be the candidate gene related to restorer gene Rf1, and Ghir_D05G035690 can be the candidate gene associated with restorer gene Rf2. Further gene expression validation with qRT-PCR confirmed the accuracy of our results. Our findings provide useful insights into decoding the potential regulatory network that retrieves pollen fertility in cotton and will help to further reveal the differences in the genetic basis of fertility restoration for two CMS systems.


Assuntos
Perfilação da Expressão Gênica , Melhoramento Vegetal , Perfilação da Expressão Gênica/métodos , Citoplasma/metabolismo , Citosol , Fertilidade/genética , Infertilidade das Plantas/genética , Transcriptoma
8.
Mol Plant Microbe Interact ; 35(10): 893-905, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35762679

RESUMO

Legumes in the inverted repeat-lacking clade (IRLC) each produce a unique set of nodule-specific cysteine-rich (NCR) peptides, which act in concert to determine the terminal differentiation of nitrogen-fixing bacteroid. IRLC legumes differ greatly in their numbers of NCR and sequence diversity. This raises the significant question how bacteroid differentiation is collectively controlled by the specific NCR repertoire of an IRLC legume. Astragalus sinicus is an IRLC legume that forms indeterminate nodules with its microsymbiont Mesorhizobium huakuii 7653R. Here, we performed transcriptome analysis of root and nodule samples at 3, 7, 14, 28 days postinoculation with M. huakuii 7653R and its isogenic ∆bacA mutant. BacA is a broad-specificity peptide transporter required for the host-derived NCRs to target rhizobial cells. A total of 167 NCRs were identified in the RNA transcripts. Comparative sequence and electrochemical analysis revealed that A. sinicus NCRs (AsNCRs) are dominated by a unique cationic group (termed subgroup C), whose mature portion is relatively long (>60 amino acids) and phylogenetically distinct and possessing six highly conserved cysteine residues. Subsequent functional characterization showed that a 7653R variant harboring AsNCR083 (a representative of subgroup C AsNCR) displayed significant growth inhibition in laboratory media and formed ineffective white nodules on A. sinicus with irregular symbiosomes. Finally, bacterial two-hybrid analysis led to the identification of GroEL1 and GroEL3 as the molecular targets of AsNCR067 and AsNCR076. Together, our data contribute to a systematic understanding of the NCR repertoire associated with the A. sinicus and M. huakuii symbiosis. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Cisteína , Fabaceae , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Fabaceae/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Peptídeos/metabolismo , RNA/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética , Transcriptoma/genética
9.
Funct Integr Genomics ; 22(5): 757-768, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35771309

RESUMO

Hybridization is useful to enhance the yield potential of agronomic crops in the world. Cotton has genome doubling due to the allotetraploid process and hybridization in coordination with duplicated genome can produce more yield and adaptability. Therefore, the expression of homoeologous gene pairs between hybrids and inbred parents is vital to characterize the genetic source of heterosis in cotton. Investigation results of homoeolog gene pairs between two contrasting hybrids and their respective inbred parents identified 36853 homoeolog genes in hybrids. It was observed both high and low hybrids had similar trends in homoeolog gene expression patterns in each tissue under study. An average of 96% of homoeolog genes had no biased expression and their expressions were derived from the equal contribution of both parents. Besides, very few homoeolog genes (an average of 1%) showed no biased or novel expression in both hybrids. The functional analysis described secondary metabolic pathways had a majority of novel biased homoeolog genes in hybrids. These results contribute preliminary knowledge about how hybridization affects expression patterns of homoeolog gene pairs in upland cotton hybrids. Our study also highlights the functional genomics of metabolic genes to explore the genetic mechanism of heterosis in cotton.


Assuntos
Vigor Híbrido , Hibridização Genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genômica , Vigor Híbrido/genética
10.
Funct Integr Genomics ; 23(1): 25, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576593

RESUMO

Deleterious effects on anther development and main economy traits caused by sterile genes or cytoplasms are one of the important genetic characteristics of cytoplasmic male sterility (CMS) systems in cotton, which severely hinder the large-scale application of "three-line" hybrids in production. Therefore, distinct characterization of each cytoplasmic type is mandatory to improve the breeding efficiency of cotton hybrids. In this study, four isonuclear-alloplasmic cotton male sterile lines with G. hirsutum (CMS-(AD)1), G. barbadense (CMS-(AD)2), G. harknessii (CMS-D2), and G. trilobum (CMS-D8) cytoplasms were first created by multiple backcrosses with common genotype Shikang126. Then, 64 pairs of mitochondrial simple sequence repeat (mtSSR) markers were designed to explore the mitochondrial DNA diversities among four isonuclear-alloplasmic cotton male sterile lines, and a total of nine pairs of polymorphic mtSSR molecular markers were successfully developed. Polymorphism analysis indicated that mtSSR59 marker correlated to the atp1 gene could effectively divide the CMS-D2, CMS-(AD)1, and CMS-(AD)2 in one category while the CMS-D8 in another category. Further cytological observation and determination of ATP contents also confirmed the accurate classification of CMS-D2 and CMS-D8 lines. Moreover, the mtSSR59 marker was successfully applied in the marker-assisted selection (MAS) for breeding new male sterile lines and precise differentiation or purity identification of different CMS-based "three-line" and conventional cotton hybrids. This study provides new technical measures for classifying various cytoplasmic sterile lines, and our results will significantly improve the efficiency of there-line hybrid breeding in cotton.


Assuntos
DNA Mitocondrial , Infertilidade das Plantas , Citoplasma/genética , DNA Mitocondrial/genética , Infertilidade das Plantas/genética , Gossypium/genética
11.
Environ Microbiol ; 24(3): 1150-1165, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34499799

RESUMO

Pseudomonas aeruginosa rugose small-colony variants (RSCVs) are frequently isolated from chronic infections, yet, they are rarely reported in environmental isolates. Here, during the comparative genomic analysis of two P. aeruginosa strains isolated from crude oil, we discovered a spontaneous in-frame deletion, wspAΔ280-307 , which led to hyper-biofilm and RSCV phenotypes. WspA is a homologue of methyl-accepting chemotaxis proteins (MCPs) that senses surfaces to regulate biofilm formation by stimulating cyclic-di-guanosine monophosphate (c-di-GMP) synthesis through the Wsp system. However, the methylation sites of WspA have never been identified. In this study, we identified E280 and E294 of WspA as methylation sites. The wspAΔ280-307 mutation enabled the Wsp system to lock into a constitutively active state that is independent of regulation by methylation. The result is an enhanced production of c-di-GMP. Sequence alignment revealed three conserved repeat sequences within the amino acid residues 280-313 (aa280-313) region of WspA homologues, suggesting that a spontaneous deletion within this DNA encoding region was likely a result of intragenic recombination and that similar mutations might occur in several related bacterial genera. Our results provide a plausible explanation for the selection of RSCVs and a mechanism to confer a competitive advantage for P. aeruginosa in a crude-oil environment.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais/genética
12.
Genomics ; 113(6): 4245-4253, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34793949

RESUMO

Heterosis refers to the superior phenotypes observed in hybrids. Cytoplasmic male sterility (CMS) system plays an important role in cotton heterosis utilization. However, the global gene expression patterns of CMS-D2 and its interaction with the restorer gene Rf1 remain unclear. Here, the full-length transcript sequencing was performed in anthers of the CMS-D2 restorer line using PacBio single-molecule real-time sequencing technology. Combining PacBio SMRT long-read isoforms and Illumina RNA-seq data, 107,066 isoforms from 44,338 loci were obtained, including 10,086 novel isoforms of novel genes and 66,419 new isoforms of known genes. Totally 56,572 alternative splicing (AS) events, 1146 lncRNAs, 61 fusion transcripts and 10,466 genes exhibited alternative polyadenylation (APA), and 60,995 novel isoforms with predicted open reading frames (ORFs) were further identified. Furthermore, the specifically expressed genes in restorer line were selected and confirmed by qRT-PCR. These findings provide a basis for upland cotton genome annotation and transcriptome research, and will help to reveal the molecular mechanism of interaction between Rf1 and CMS-D2 cytoplasm.


Assuntos
RNA Longo não Codificante , Transcriptoma , Fertilidade/genética , Estudos de Associação Genética , RNA Longo não Codificante/genética , RNA-Seq
13.
Mol Plant Microbe Interact ; 34(5): 547-559, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33596109

RESUMO

Rhizobia are rod-shaped bacteria that form nitrogen-fixing root nodules on leguminous plants; however, they don't carry MreB, a key determinant of rod-like cell shape. Here, we introduced an actin-like mreB homolog from a pseudomonad into Mesorhizobium huakuii 7653R (a microsymbiont of Astragalus sinicus L.) and examined the molecular, cellular, and symbiotic phenotypes of the resultant mutant. Exogenous mreB caused an enlarged cell size and slower growth in laboratory medium. However, the mutant formed small, ineffective nodules on A. sinicus (Nod+ Fix-), and rhizobial cells in the infection zone were unable to differentiate into bacteroids. RNA sequencing analysis also revealed minor effects of mreB on global gene expression in free-living cells but larger effects for cells grown in planta. Differentially expressed nodule-specific genes include cell cycle regulators such as the tubulin-like ftsZ1 and ftsZ2. Unlike the ubiquitous FtsZ1, an FtsZ2 homolog was commonly found in Rhizobium, Sinorhizobium, and Mesorhizobium spp. but not in closely related nonsymbiotic species. Bacterial two-hybrid analysis revealed that MreB interacts with FtsZ1 and FtsZ2, which are targeted by the host-derived nodule-specific cysteine-rich peptides. Significantly, MreB mutation D283A disrupted the protein-protein interactions and restored the aforementioned phenotypic defects caused by MreB in M. huakuii. Together, our data indicate that MreB is detrimental for modern rhizobia and its interaction with FtsZ1 and FtsZ2 causes the symbiotic process to cease at the late stage of bacteroid differentiation. These findings led to a hypothesis that loss of mreB in the common ancestor of members of Rhizobiales and subsequent acquisition of ftsZ2 are critical evolutionary steps leading to legume-rhizobial symbiosis.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fabaceae , Rhizobium , Proteínas do Citoesqueleto , Mesorhizobium , Fixação de Nitrogênio , Nódulos Radiculares de Plantas , Simbiose
14.
BMC Genomics ; 22(1): 24, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407111

RESUMO

BACKGROUND: Cytoplasmic male sterile (CMS) with cytoplasm from Gossypium Trilobum (D8) fails to produce functional pollen. It is useful for commercial hybrid cotton seed production. The restore line of CMS-D8 containing Rf2 gene can restore the fertility of the corresponding sterile line. This study combined the whole genome resequencing bulked segregant analysis (BSA) with high-throughput SNP genotyping to accelerate the physical mapping of Rf2 locus in CMS-D8 cotton. METHODS: The fertility of backcross population ((sterile line×restorer line)×maintainer line) comprising of 1623 individuals was investigated in the field. The fertile pool (100 plants with fertile phenotypes, F-pool) and the sterile pool (100 plants with sterile phenotypes, S-pool) were constructed for BSA resequencing. The selection of 24 single nucleotide polymorphisms (SNP) through high-throughput genotyping and the development insertion and deletion (InDel) markers were conducted to narrow down the candidate interval. The pentapeptide repeat (PPR) family genes and upregulated genes in restore line in the candidate interval were analysed by qRT-PCR. RESULTS: The fertility investigation results showed that fertile and sterile separation ratio was consistent with 1:1. BSA resequencing technology, high-throughput SNP genotyping, and InDel markers were used to identify Rf2 locus on candidate interval of 1.48 Mb on chromosome D05. Furthermore, it was quantified in this experiment that InDel markers co-segregated with Rf2 enhanced the selection of the restorer line. The qRT-PCR analysis revealed PPR family gene Gh_D05G3391 located in candidate interval had significantly lower expression than sterile and maintainer lines. In addition, utilization of anther RNA-Seq data of CMS-D8 identified that the expression level of Gh_D05G3374 encoding NB-ARC domain-containing disease resistance protein in restorer lines was significantly higher than that in sterile and maintainer lines. CONCLUSIONS: This study not only enabled us to precisely locate the restore gene Rf2 but also evaluated the utilization of InDel markers for marker assisted selection in the CMS-D8 Rf2 cotton breeding line. The results of this study provide an important foundation for further studies on the mapping and cloning of restorer genes.


Assuntos
Gossypium , Melhoramento Vegetal , Mapeamento Cromossômico , Citoplasma , Gossypium/genética , Humanos , Mutação INDEL , Infertilidade das Plantas/genética
15.
J Bacteriol ; 202(13)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32291279

RESUMO

HutC is known as a transcriptional repressor specific for histidine utilization (hut) genes in Gram-negative bacteria, including Pseudomonas fluorescens SBW25. However, its precise mode of protein-DNA interactions hasn't been examined with purified HutC proteins. Here, we performed electrophoretic mobility shift assay (EMSA) and DNase I footprinting using His6-tagged HutC and biotin-labeled probe of the hut promoter (PhutU). Results revealed a complex pattern of HutC oligomerization, and the specific protein-DNA interaction is disrupted by urocanate, a histidine derivative, in a concentration-dependent manner. Next, we searched for putative HutC-binding sites in the SBW25 genome. This led to the identification of 143 candidate targets with a P value less than 10-4 HutC interaction with eight selected candidate sites was subsequently confirmed by EMSA analysis, including the type IV pilus assembly protein PilZ, phospholipase C (PlcC) for phosphatidylcholine hydrolyzation, and key regulators of cellular nitrogen metabolism (NtrBC and GlnE). Finally, an isogenic hutC deletion mutant was subjected to transcriptome sequencing (RNA-seq) analysis and phenotypic characterization. When bacteria were grown on succinate and histidine, hutC deletion caused upregulation of 794 genes and downregulation of 525 genes at a P value of <0.05 with a fold change cutoff of 2.0. The hutC mutant displayed an enhanced spreading motility and pyoverdine production in laboratory media, in addition to the previously reported growth defect on the surfaces of plants. Together, our data indicate that HutC plays global regulatory roles beyond histidine catabolism through low-affinity binding with operator sites located outside the hut locus.IMPORTANCE HutC in Pseudomonas is a representative member of the GntR/HutC family of transcriptional regulators, which possess a N-terminal winged helix-turn-helix (wHTH) DNA-binding domain and a C-terminal substrate-binding domain. HutC is generally known to repress expression of histidine utilization (hut) genes through binding to the PhutU promoter with urocanate (the first intermediate of the histidine degradation pathway) as the direct inducer. Here, we first describe the detailed molecular interactions between HutC and its PhutU target site in a plant growth-promoting bacterium, P. fluorescens SBW25, and further show that HutC possesses specific DNA-binding activities with many targets in the SBW25 genome. Subsequent RNA-seq analysis and phenotypic assays revealed an unexpected global regulatory role of HutC for successful bacterial colonization in planta.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina/metabolismo , Pseudomonas fluorescens/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/genética , Regiões Promotoras Genéticas , Pseudomonas fluorescens/genética , Proteínas Repressoras/genética , Transcrição Gênica
16.
BMC Genomics ; 21(1): 140, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041531

RESUMO

BACKGROUND: Heterosis breeding is the most useful method for yield increase around the globe. Heterosis is an intriguing process to develop superior offspring to either parent in the desired character. The biomass vigor produced during seedling emergence stage has a direct influence on yield heterosis in plants. Unfortunately, the genetic basis of early biomass vigor in cotton is poorly understood. RESULTS: Three stable performing F1 hybrids varying in yield heterosis named as high, medium and low hybrids with their inbred parents were used in this study. Phenotypically, these hybrids established noticeable biomass heterosis during the early stage of seedling growth in the field. Transcriptome analysis of root and leaf revealed that hybrids showed many differentially expressed genes (DEGs) relative to their parents, while the comparison of inbred parents showed limited number of DEGs indicating similarity in their genetic constitution. Further analysis indicated expression patterns of most DEGs were overdominant in both tissues of hybrids. According to GO results, functions of overdominance genes in leaf were enriched for chloroplast, membrane, and protein binding, whereas functions of overdominance genes in root were enriched for plasma membrane, extracellular region, and responses to stress. We found several genes of circadian rhythm pathway related to LATE ELONGATED HYPOCOTYL (LHY) showed downregulated overdominant expressions in both tissues of hybrids. In addition to circadian rhythm, several leaf genes related to Aux/IAA regulation, and many root genes involved in peroxidase activity also showed overdominant expressions in hybrids. Twelve genes involved in circadian rhythm plant were selected to perform qRT-PCR analysis to confirm the accuracy of RNA-seq results. CONCLUSIONS: Through genome-wide comparative transcriptome analysis, we strongly predict that overdominance at gene expression level plays a pivotal role in early biomass vigor of hybrids. The combinational contribution of circadian rhythm and other metabolic process may control vigorous growth in hybrids. Our result provides an important foundation for dissecting molecular mechanisms of biomass vigor in hybrid cotton.


Assuntos
Biomassa , Gossypium/genética , Vigor Híbrido , Melhoramento Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Hibridização Genética , Transcriptoma
17.
BMC Plant Biol ; 20(1): 293, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590947

RESUMO

BACKGROUND: Leguminous plants alter patterns of gene expression in response to symbiotic colonization and infection by their cognate rhizobial bacteria, but the extent of the transcriptomic response has rarely been examined below the species level. Here we describe the identification of 12 rhizobial biotypes of Ensifer meliloti, which form nitrogen-fixing nodules in the roots of alfalfa (Medicago sativa L.), followed by a comparative RNA-seq analysis of four alfalfa cultivars each inoculated with two E. meliloti strains varying in symbiotic performance and phylogenetic relatedness. RESULTS: Rhizobial biotypes were identified on the basis of their symbiotic performance, particularly shoot dry weight. Differentially expressed genes (DEGs) and metabolic pathways were determined by comparing the RNA-seq data with that of the uninoculated control plant. Significant differences were found between DEGs generated in each cultivar with the inoculation of two rhizobial strains in comparison (P < 0.01). A total of 8111 genes was differentially expressed, representing ~ 17.1% of the M. sativa genome. The proportion of DEGs ranges from 0.5 to 12.2% for each alfalfa cultivar. Interestingly, genes with predicted roles in flavonoid biosynthesis and plant-pathogen interaction (NBS-LRR) were identified as the most significant DEGs. Other DEGs include Medsa002106 and genes encoding nodulins and NCR peptides whose expression is specifically induced during the development of nitrogen-fixing nodules. More importantly, strong significant positive correlations were observed between plant transcriptomes (DEGs and KEGG pathways) and phylogenetic distances between the two rhizobial inoculants. CONCLUSIONS: Alfalfa expresses significantly distinct sets of genes in response to infection by different rhizobial strains at the below-species levels (i.e. biotype or strain). Candidate genes underlying the specific interactions include Medsa002106 and those encoding nodulins and NCR peptides and proteins in the NBS-LRR family.


Assuntos
Medicago sativa/genética , Sinorhizobium meliloti/fisiologia , Simbiose , Elementos de DNA Transponíveis , Flavonoides/biossíntese , Perfilação da Expressão Gênica , Glutamato-Amônia Ligase/genética , Leghemoglobina/genética , Medicago sativa/microbiologia , Tipagem Molecular , Fixação de Nitrogênio , Peptídeos/genética , RNA Bacteriano , RNA-Seq , Sinorhizobium meliloti/classificação , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/isolamento & purificação
18.
BMC Plant Biol ; 20(1): 239, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460693

RESUMO

BACKGROUND: Utilization of heterosis has greatly improved the productivity of many crops worldwide. Understanding the potential molecular mechanism about how hybridization produces superior yield in upland cotton is critical for efficient breeding programs. RESULTS: In this study, high, medium, and low hybrids varying in the level of yield heterosis were screened based on field experimentation of different years and locations. Phenotypically, high hybrid produced a mean of 14% more seed cotton yield than its better parent. Whole-genome RNA sequencing of these hybrids and their four inbred parents was performed using different tissues of the squaring stage. Comparative transcriptomic differences in each hybrid parent triad revealed a higher percentage of differentially expressed genes (DEGs) in each tissue. Expression level dominance analysis identified majority of hybrids DEGs were biased towards parent like expressions. An array of DEGs involved in ATP and protein binding, membrane, cell wall, mitochondrion, and protein phosphorylation had more functional annotations in hybrids. Sugar metabolic and plant hormone signal transduction pathways were most enriched in each hybrid. Further, these two pathways had most mapped DEGs on known seed cotton yield QTLs. Integration of transcriptome, QTLs, and gene co-expression network analysis discovered genes Gh_A03G1024, Gh_D08G1440, Gh_A08G2210, Gh_A12G2183, Gh_D07G1312, Gh_D08G1467, Gh_A03G0889, Gh_A08G2199, and Gh_D05G0202 displayed a complex regulatory network of many interconnected genes. qRT-PCR of these DEGs was performed to ensure the accuracy of RNA-Seq data. CONCLUSIONS: Through genome-wide comparative transcriptome analysis, the current study identified nine key genes and pathways associated with biological process of yield heterosis in upland cotton. Our results and data resources provide novel insights and will be useful for dissecting the molecular mechanism of yield heterosis in cotton.


Assuntos
Gossypium/genética , Vigor Híbrido/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Reação em Cadeia da Polimerase em Tempo Real
19.
J Exp Bot ; 71(3): 951-969, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31639825

RESUMO

Anther development in flowering plants is highly sensitive to high-temperature (HT) stress. Understanding the potential epigenetic mechanism of anther infertility induced by HT stress in cotton (Gossypium hirsutum L.) is crucial for the effective use of genetic resources to guide plant breeding. Using the whole-genome bisulfite sequencing, we map cytosine methylation at single-base resolution across the whole genome of cotton anthers, and changes in the methylome of the cytoplasmic male sterility system associated with HT stress were analysed in two cotton lines with contrasting HT stress tolerance. The cotton anther genome was found to display approximately 31.6%, 68.7%, 61.8%, and 21.8% methylation across all sequenced C sites and in the CG, CHG, and CHH sequence contexts, respectively. In an integrated global methylome and transcriptome analysis, only promoter-unmethylated genes showed higher expression levels than promoter-methylated genes, whereas gene body methylation presented an obvious positive correlation with gene expression. The methylation profiles of transposable elements in cotton anthers were characterized, and more differentially methylated transposable elements were demethylated under HT stress. HT-induced promoter methylation changes led to the up-regulation of the mitochondrial respiratory chain enzyme-associated genes GhNDUS7, GhCOX6A, GhCX5B2, and GhATPBM, ultimately promoting a series of redox processes to form ATP for normal anther development under HT stress. In vitro application of the common DNA methylation inhibitor 5-azacytidine and accelerator methyl trifluoromethanesulfonate demonstrated that DNA demethylation promoted anther development, while increased methylation only partially inhibited anther development under HT stress.


Assuntos
Epigenoma , Flores/crescimento & desenvolvimento , Gossypium/fisiologia , Infertilidade das Plantas , Termotolerância , Cromossomos de Plantas , Metilação de DNA , Elementos de DNA Transponíveis , Flores/metabolismo , Fosforilação Oxidativa
20.
Mol Biol Rep ; 47(2): 1275-1282, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894465

RESUMO

The cytoplasmic male sterility (CMS) system is a useful tool for commercial hybrid cotton seed production. Two main CMS systems, CMS-D8 and CMS-D2, have been recognized with Rf2 and Rf1 as the restorer genes, respectively. The development of molecular markers tightly linked with restorer genes can facilitate the breeding of restorer lines. In this study, the InDel-1892 marker was developed to distinguish Rf2 and Rf1 simultaneously. Sequence alignment implied that CMS-D8-Rf2 has a 32 bp insertion and that CMS-D2-Rf1 has a 186 bp insertion at the InDel-1892 locus. The codominant marker was co-segregated with Rf1 and Rf2. Hence, this marker can be used for tracing Rf1 and Rf2 simultaneously and identifying the allele status at the restorer gene locus. The results of this study will facilitate efficient marker-assisted selection for restorer lines and hybrids of CMS systems.


Assuntos
Genes de Plantas , Marcadores Genéticos , Gossypium/genética , Mutação INDEL , Infertilidade das Plantas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Loci Gênicos , Reprodutibilidade dos Testes , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA