Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37738401

RESUMO

Cracking the entangling code of protein-ligand interaction (PLI) is of great importance to structure-based drug design and discovery. Different physical and biochemical representations can be used to describe PLI such as energy terms and interaction fingerprints, which can be analyzed by machine learning (ML) algorithms to create ML-based scoring functions (MLSFs). Here, we propose the ML-based PLI capturer (ML-PLIC), a web platform that automatically characterizes PLI and generates MLSFs to identify the potential binders of a specific protein target through virtual screening (VS). ML-PLIC comprises five modules, including Docking for ligand docking, Descriptors for PLI generation, Modeling for MLSF training, Screening for VS and Pipeline for the integration of the aforementioned functions. We validated the MLSFs constructed by ML-PLIC in three benchmark datasets (Directory of Useful Decoys-Enhanced, Active as Decoys and TocoDecoy), demonstrating accuracy outperforming traditional docking tools and competitive performance to the deep learning-based SF, and provided a case study of the Serine/threonine-protein kinase WEE1 in which MLSFs were developed by using the ML-based VS pipeline in ML-PLIC. Underpinning the latest version of ML-PLIC is a powerful platform that incorporates physical and biological knowledge about PLI, leveraging PLI characterization and MLSF generation into the design of structure-based VS pipeline. The ML-PLIC web platform is now freely available at http://cadd.zju.edu.cn/plic/.


Assuntos
Algoritmos , Benchmarking , Ligantes , Desenho de Fármacos , Aprendizado de Máquina
2.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38171930

RESUMO

Protein loops play a critical role in the dynamics of proteins and are essential for numerous biological functions, and various computational approaches to loop modeling have been proposed over the past decades. However, a comprehensive understanding of the strengths and weaknesses of each method is lacking. In this work, we constructed two high-quality datasets (i.e. the General dataset and the CASP dataset) and systematically evaluated the accuracy and efficiency of 13 commonly used loop modeling approaches from the perspective of loop lengths, protein classes and residue types. The results indicate that the knowledge-based method FREAD generally outperforms the other tested programs in most cases, but encountered challenges when predicting loops longer than 15 and 30 residues on the CASP and General datasets, respectively. The ab initio method Rosetta NGK demonstrated exceptional modeling accuracy for short loops with four to eight residues and achieved the highest success rate on the CASP dataset. The well-known AlphaFold2 and RoseTTAFold require more resources for better performance, but they exhibit promise for predicting loops longer than 16 and 30 residues in the CASP and General datasets. These observations can provide valuable insights for selecting suitable methods for specific loop modeling tasks and contribute to future advancements in the field.


Assuntos
Proteínas , Conformação Proteica , Proteínas/química
3.
Acc Chem Res ; 57(10): 1500-1509, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38577892

RESUMO

Molecular docking, also termed ligand docking (LD), is a pivotal element of structure-based virtual screening (SBVS) used to predict the binding conformations and affinities of protein-ligand complexes. Traditional LD methodologies rely on a search and scoring framework, utilizing heuristic algorithms to explore binding conformations and scoring functions to evaluate binding strengths. However, to meet the efficiency demands of SBVS, these algorithms and functions are often simplified, prioritizing speed over accuracy.The emergence of deep learning (DL) has exerted a profound impact on diverse fields, ranging from natural language processing to computer vision and drug discovery. DeepMind's AlphaFold2 has impressively exhibited its ability to accurately predict protein structures solely from amino acid sequences, highlighting the remarkable potential of DL in conformation prediction. This groundbreaking advancement circumvents the traditional search-scoring frameworks in LD, enhancing both accuracy and processing speed and thereby catalyzing a broader adoption of DL algorithms in binding pose prediction. Nevertheless, a consensus on certain aspects remains elusive.In this Account, we delineate the current status of employing DL to augment LD within the VS paradigm, highlighting our contributions to this domain. Furthermore, we discuss the challenges and future prospects, drawing insights from our scholarly investigations. Initially, we present an overview of VS and LD, followed by an introduction to DL paradigms, which deviate significantly from traditional search-scoring frameworks. Subsequently, we delve into the challenges associated with the development of DL-based LD (DLLD), encompassing evaluation metrics, application scenarios, and physical plausibility of the predicted conformations. In the evaluation of LD algorithms, it is essential to recognize the multifaceted nature of the metrics. While the accuracy of binding pose prediction, often measured by the success rate, is a pivotal aspect, the scoring/screening power and computational speed of these algorithms are equally important given the pivotal role of LD tools in VS. Regarding application scenarios, early methods focused on blind docking, where the binding site is unknown. However, recent studies suggest a shift toward identifying binding sites rather than solely predicting binding poses within these models. In contrast, LD with a known pocket in VS has been shown to be more practical. Physical plausibility poses another significant challenge. Although DLLD models often achieve higher success rates compared to traditional methods, they may generate poses with implausible local structures, such as incorrect bond angles or lengths, which are disadvantageous for postprocessing tasks like visualization. Finally, we discuss the future perspectives for DLLD, emphasizing the need to improve generalization ability, strike a balance between speed and accuracy, account for protein conformation flexibility, and enhance physical plausibility. Additionally, we delve into the comparison between generative and regression algorithms in this context, exploring their respective strengths and potential.


Assuntos
Aprendizado Profundo , Simulação de Acoplamento Molecular , Ligantes , Proteínas/química , Proteínas/metabolismo , Algoritmos , Descoberta de Drogas
4.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35438145

RESUMO

Molecular property prediction models based on machine learning algorithms have become important tools to triage unpromising lead molecules in the early stages of drug discovery. Compared with the mainstream descriptor- and graph-based methods for molecular property predictions, SMILES-based methods can directly extract molecular features from SMILES without human expert knowledge, but they require more powerful algorithms for feature extraction and a larger amount of data for training, which makes SMILES-based methods less popular. Here, we show the great potential of pre-training in promoting the predictions of important pharmaceutical properties. By utilizing three pre-training tasks based on atom feature prediction, molecular feature prediction and contrastive learning, a new pre-training method K-BERT, which can extract chemical information from SMILES like chemists, was developed. The calculation results on 15 pharmaceutical datasets show that K-BERT outperforms well-established descriptor-based (XGBoost) and graph-based (Attentive FP and HRGCN+) models. In addition, we found that the contrastive learning pre-training task enables K-BERT to 'understand' SMILES not limited to canonical SMILES. Moreover, the general fingerprints K-BERT-FP generated by K-BERT exhibit comparative predictive power to MACCS on 15 pharmaceutical datasets and can also capture molecular size and chirality information that traditional binary fingerprints cannot capture. Our results illustrate the great potential of K-BERT in the practical applications of molecular property predictions in drug discovery.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Bases de Conhecimento , Preparações Farmacêuticas , Projetos de Pesquisa
5.
PLoS Pathog ; 18(5): e1010505, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35503798

RESUMO

The Hippo signaling pathway, which is historically considered as a dominator of organ development and homeostasis has recently been implicated as an immune regulator. However, its role in host defense against influenza A virus (IAV) has not been widely investigated. Here, we found that IAV could activate the Hippo effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) through physical binding of the IAV non-structural protein 1 (NS1) with C-terminal domain of YAP/TAZ, facilitating their nuclear location. Meanwhile, YAP/TAZ downregulated the expression of pro-inflammatory and anti-viral cytokines against IAV infection, therefore benefiting virus replication and host cell apoptosis. A mouse model of IAV infection further demonstrated Yap deficiency protected mice against IAV infection, relieving lung injury. Mechanistically, YAP/TAZ blocked anti-viral innate immune signaling via downregulation of Toll-like receptor 3 (TLR3) expression. YAP directly bound to the putative TEADs binding site on the promoter region of TLR3. The elimination of acetylated histone H3 occupancy in the TLR3 promoter resulted in its transcriptional silence. Moreover, treatment of Trichostatin A, a histone deacetylases (HDACs) inhibitor or disruption of HDAC4/6 reversed the inhibition of TLR3 expression by YAP/TAZ, suggesting HDAC4/6 mediated the suppression function of YAP/TAZ. Taken together, we uncovered a novel immunomodulatory mechanism employed by IAV, where YAP/TAZ antagonize TLR3-mediated innate immunity.


Assuntos
Vírus da Influenza A , Receptor 3 Toll-Like , Proteínas não Estruturais Virais/metabolismo , Animais , Imunidade Inata , Vírus da Influenza A/metabolismo , Camundongos , Transdução de Sinais , Fatores de Transcrição/metabolismo
6.
J Chem Inf Model ; 64(6): 2112-2124, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38483249

RESUMO

Cyclic peptides have emerged as a highly promising class of therapeutic molecules owing to their favorable pharmacokinetic properties, including stability and permeability. Currently, many clinically approved cyclic peptides are derived from natural products or their derivatives, and the development of molecular docking techniques for cyclic peptide discovery holds great promise for expanding the applications and potential of this class of molecules. Given the availability of numerous docking programs, there is a pressing need for a systematic evaluation of their performance, specifically on protein-cyclic peptide systems. In this study, we constructed an extensive benchmark data set called CPSet, consisting of 493 protein-cyclic peptide complexes. Based on this data set, we conducted a comprehensive evaluation of 10 docking programs, including Rosetta, AutoDock CrankPep, and eight protein-small molecule docking programs (i.e., AutoDock, AudoDock Vina, Glide, GOLD, LeDock, rDock, MOE, and Surflex). The evaluation encompassed the assessment of the sampling power, docking power, and scoring power of these programs. The results revealed that all of the tested protein-small molecule docking programs successfully sampled the binding conformations when using the crystal conformations as the initial structures. Among them, rDock exhibited outstanding performance, achieving a remarkable 94.3% top-100 sampling success rate. However, few programs achieved successful predictions of the binding conformations using tLEaP-generated conformations as the initial structures. Within this scheme, AutoDock CrankPep yielded the highest top-100 sampling success rate of 29.6%. Rosetta's scoring function outperformed the others in selecting optimal conformations, resulting in an impressive top-1 docking success rate of 87.6%. Nevertheless, all the tested scoring functions displayed limited performance in predicting binding affinity, with MOE@Affinity dG exhibiting the highest Pearson's correlation coefficient of 0.378. It is therefore suggested to use an appropriate combination of different docking programs for given tasks in real applications. We expect that this work will offer valuable insights into selecting the appropriate docking programs for protein-cyclic peptide complexes.


Assuntos
Peptídeos Cíclicos , Proteínas , Peptídeos Cíclicos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química , Conformação Molecular , Ligantes
7.
J Chem Inf Model ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920405

RESUMO

Artificial intelligence (AI)-aided drug design has demonstrated unprecedented effects on modern drug discovery, but there is still an urgent need for user-friendly interfaces that bridge the gap between these sophisticated tools and scientists, particularly those who are less computer savvy. Herein, we present DrugFlow, an AI-driven one-stop platform that offers a clean, convenient, and cloud-based interface to streamline early drug discovery workflows. By seamlessly integrating a range of innovative AI algorithms, covering molecular docking, quantitative structure-activity relationship modeling, molecular generation, ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction, and virtual screening, DrugFlow can offer effective AI solutions for almost all crucial stages in early drug discovery, including hit identification and hit/lead optimization. We hope that the platform can provide sufficiently valuable guidance to aid real-word drug design and discovery. The platform is available at https://drugflow.com.

8.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33822874

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) and it has been one of the top 10 causes of death globally. Drug-resistant tuberculosis (XDR-TB), extensively resistant to the commonly used first-line drugs, has emerged as a major challenge to TB treatment. Hence, it is quite necessary to discover novel drug candidates for TB treatment. In this study, based on different types of molecular representations, four machine learning (ML) algorithms, including support vector machine, random forest (RF), extreme gradient boosting (XGBoost) and deep neural networks (DNN), were used to develop classification models to distinguish Mtb inhibitors from noninhibitors. The results demonstrate that the XGBoost model exhibits the best prediction performance. Then, two consensus strategies were employed to integrate the predictions from multiple models. The evaluation results illustrate that the consensus model by stacking the RF, XGBoost and DNN predictions offers the best predictions with area under the receiver operating characteristic curve of 0.842 and 0.942 for the 10-fold cross-validated training set and external test set, respectively. Besides, the association between the important descriptors and the bioactivities of molecules was interpreted by using the Shapley additive explanations method. Finally, an online webserver called ChemTB (http://cadd.zju.edu.cn/chemtb/) was developed, and it offers a freely available computational tool to detect potential Mtb inhibitors.


Assuntos
Antituberculosos/análise , Antituberculosos/farmacologia , Descoberta de Drogas/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Redes Neurais de Computação , Máquina de Vetores de Suporte , Antituberculosos/uso terapêutico , Área Sob a Curva , Confiabilidade dos Dados , Humanos , Modelos Biológicos , Curva ROC , Reprodutibilidade dos Testes , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
9.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32484221

RESUMO

Machine learning-based scoring functions (MLSFs) have attracted extensive attention recently and are expected to be potential rescoring tools for structure-based virtual screening (SBVS). However, a major concern nowadays is whether MLSFs trained for generic uses rather than a given target can consistently be applicable for VS. In this study, a systematic assessment was carried out to re-evaluate the effectiveness of 14 reported MLSFs in VS. Overall, most of these MLSFs could hardly achieve satisfactory results for any dataset, and they could even not outperform the baseline of classical SFs such as Glide SP. An exception was observed for RFscore-VS trained on the Directory of Useful Decoys-Enhanced dataset, which showed its superiority for most targets. However, in most cases, it clearly illustrated rather limited performance on the targets that were dissimilar to the proteins in the corresponding training sets. We also used the top three docking poses rather than the top one for rescoring and retrained the models with the updated versions of the training set, but only minor improvements were observed. Taken together, generic MLSFs may have poor generalization capabilities to be applicable for the real VS campaigns. Therefore, it should be quite cautious to use this type of methods for VS.


Assuntos
Descoberta de Drogas/métodos , Aprendizado de Máquina , Interface Usuário-Computador , Conjuntos de Dados como Assunto , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica
10.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33418562

RESUMO

Machine-learning (ML)-based scoring functions (MLSFs) have gradually emerged as a promising alternative for protein-ligand binding affinity prediction and structure-based virtual screening. However, clouds of doubts have still been raised against the benefits of this novel type of scoring functions (SFs). In this study, to benchmark the performance of target-specific MLSFs on a relatively unbiased dataset, the MLSFs trained from three representative protein-ligand interaction representations were assessed on the LIT-PCBA dataset, and the classical Glide SP SF and three types of ligand-based quantitative structure-activity relationship (QSAR) models were also utilized for comparison. Two major aspects in virtual screening campaigns, including prediction accuracy and hit novelty, were systematically explored. The calculation results illustrate that the tested target-specific MLSFs yielded generally superior performance over the classical Glide SP SF, but they could hardly outperform the 2D fingerprint-based QSAR models. Although substantial improvements could be achieved by integrating multiple types of protein-ligand interaction features, the MLSFs were still not sufficient to exceed MACCS-based QSAR models. In terms of the correlations between the hit ranks or the structures of the top-ranked hits, the MLSFs developed by different featurization strategies would have the ability to identify quite different hits. Nevertheless, it seems that target-specific MLSFs do not have the intrinsic attributes of a traditional SF and may not be a substitute for classical SFs. In contrast, MLSFs can be regarded as a new derivative of ligand-based QSAR models. It is expected that our study may provide valuable guidance for the assessment and further development of target-specific MLSFs.


Assuntos
Bases de Dados de Proteínas , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Proteínas/química , Ligantes , Relação Quantitativa Estrutura-Atividade
11.
Brief Bioinform ; 22(1): 497-514, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31982914

RESUMO

How to accurately estimate protein-ligand binding affinity remains a key challenge in computer-aided drug design (CADD). In many cases, it has been shown that the binding affinities predicted by classical scoring functions (SFs) cannot correlate well with experimentally measured biological activities. In the past few years, machine learning (ML)-based SFs have gradually emerged as potential alternatives and outperformed classical SFs in a series of studies. In this study, to better recognize the potential of classical SFs, we have conducted a comparative assessment of 25 commonly used SFs. Accordingly, the scoring power was systematically estimated by using the state-of-the-art ML methods that replaced the original multiple linear regression method to refit individual energy terms. The results show that the newly-developed ML-based SFs consistently performed better than classical ones. In particular, gradient boosting decision tree (GBDT) and random forest (RF) achieved the best predictions in most cases. The newly-developed ML-based SFs were also tested on another benchmark modified from PDBbind v2007, and the impacts of structural and sequence similarities were evaluated. The results indicated that the superiority of the ML-based SFs could be fully guaranteed when sufficient similar targets were contained in the training set. Moreover, the effect of the combinations of features from multiple SFs was explored, and the results indicated that combining NNscore2.0 with one to four other classical SFs could yield the best scoring power. However, it was not applicable to derive a generic target-specific SF or SF combination.


Assuntos
Desenvolvimento de Medicamentos/métodos , Aprendizado de Máquina/normas , Proteômica/métodos , Animais , Desenvolvimento de Medicamentos/normas , Humanos , Ligantes , Ligação Proteica , Proteoma/metabolismo , Proteômica/normas
12.
FASEB J ; 36(6): e22346, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35583908

RESUMO

Autoimmune hepatitis is an interface hepatitis characterized by the progressive destruction of the liver parenchyma, the cause of which is still obscure. Interleukin (IL)-17A is a major driver of autoimmunity, which can be produced by innate immune cells against several intracellular pathogens. Here, we investigated the involvement of IL-17A in a mice model of immune-mediated hepatitis with the intestine exposed to Salmonella typhimurium. Our results showed more severe Concanavalin (Con) A-induced liver injury and gut microbiome dysbiosis when the mice were treated with a gavage of S. typhimurium. Then, the natural killer (NK) T cells were overactivated by the accumulated IL-17A in the liver in the Con A and S. typhimurium administration group. IL-17A could activate NKT cells by inducing CD178 expression via IL-4/STAT6 signaling. Furthermore, via the portal tract, the laminae propria mucosal-associated invariant T (MAIT)-cell-derived IL-17A could be the original driver of NKT cell overactivation in intragastric administration of S. typhimurium and Con A injection. In IL-17A-deficient mice, Con A-induced liver injury and NKT cell activation were alleviated. However, when AAV-sh-mIL-17a was used to specifically knock down IL-17A in liver, it seemed that hepatic IL-17a knock down did not significantly influence the liver injury. Our results suggested that, under Con A-induction, laminae propria MAIT-derived IL-17A activated hepatic NKT, and this axis could be a therapeutic target in autoimmune liver disease.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatite Autoimune , Interleucina-17 , Células T Matadoras Naturais , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/imunologia , Concanavalina A/toxicidade , Hepatite Autoimune/metabolismo , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mucosa , Células T Matadoras Naturais/imunologia
13.
J Chem Inf Model ; 63(11): 3319-3327, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37184885

RESUMO

In the past few years, a number of machine learning (ML)-based molecular generative models have been proposed for generating molecules with desirable properties, but they all require a large amount of label data of pharmacological and physicochemical properties. However, experimental determination of these labels, especially bioactivity labels, is very expensive. In this study, we analyze the dependence of various multi-property molecule generation models on biological activity label data and propose Frag-G/M, a fragment-based multi-constraint molecular generation framework based on conditional transformer, recurrent neural networks (RNNs), and reinforcement learning (RL). The experimental results illustrate that, using the same number of labels, Frag-G/M can generate more desired molecules than the baselines (several times more than the baselines). Moreover, compared with the known active compounds, the molecules generated by Frag-G/M exhibit higher scaffold diversity than those generated by the baselines, thus making it more promising to be used in real-world drug discovery scenarios.


Assuntos
Descoberta de Drogas , Redes Neurais de Computação , Descoberta de Drogas/métodos , Aprendizado de Máquina , Modelos Moleculares
14.
Int J Med Sci ; 20(9): 1202-1211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575268

RESUMO

Skeletal muscle injuries are commonly observed during sports and trauma. Regular exercise promotes muscle repair; however, the underlying mechanisms require further investigation. In addition to exercise, osteopontin (OPN) contributes to skeletal muscle regeneration and fibrosis following injury. However, whether and how OPN affects matrix proteins to promote post-injury muscle repair remains uncertain. We recruited regular exercise (RE) and sedentary control (SC) groups to determine plasma OPN levels. Additionally, we developed a murine model of muscle contusion injury and compared the extent of damage, inflammatory state, and regeneration-related proteins in OPN knockout (OPN KO) and wild-type (WT) mice. Our results show that regular exercise induced the increase of OPN, matrix metalloproteinases (MMPs), and transforming growth factor-ß (TGF-ß) expression in plasma. Injured muscle fibers were repaired more slowly in OPN-KO mice than in WT mice. The expression levels of genes and proteins related to muscle regeneration were lower in OPN-KO mice after injury. OPN also promotes fibroblast proliferation, differentiation, and migration. Additionally, OPN upregulates MMP expression by activating TGF-ß, which promotes muscle repair. OPN can improve post-injury muscle repair by activating MMPs and TGF-ß pathways. It is upregulated by regular exercise. Our study provides a potential target for the treatment of muscle injuries and explains why regular physical exercise is beneficial for muscle repair.


Assuntos
Osteopontina , Fator de Crescimento Transformador beta , Animais , Camundongos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculos/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
15.
Soft Matter ; 18(25): 4660-4666, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35543353

RESUMO

Shape-changing objects are prized for applications ranging from acoustics to robotics. We report sub-millimetre bubbles that reversibly and rapidly change not only their shape but also their topological class, from sphere to torus, when subjected to a simple pressure treatment. Stabilized by a solid-like film of nanoscopic protein "particles", the bubbles may persist in toroidal form for several days, most of them with the relative dimensions expected of Clifford tori. The ability to cross topological classes reversibly and quickly is enabled by the expulsion of protein from the strained surfaces in the form of submicron assemblies. Compared to structural modifications of liquid-filled vesicles, for example by slow changes in solution osmolality, the rapid inducement of shape changes in bubbles by application of pressure may hasten experimental investigations of surface mechanics, even as it suggests new routes to lightweight materials with high surface areas.


Assuntos
Pressão , Propriedades de Superfície
16.
J Chem Inf Model ; 61(6): 2844-2856, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34014672

RESUMO

The molecular mechanics/generalized Born surface area (MM/GBSA) has been widely used in end-point binding free energy prediction in structure-based drug design (SBDD). However, in practice, it is usually being treated as a disputed method mostly because of its system dependence. Here, combining with machine-learning optimization, we developed a novel version of MM/GBSA, named variable atomic dielectric MM/GBSA (VAD-MM/GBSA), by assigning variable dielectric constants directly to the protein/ligand atoms. The new strategy exhibits markedly improved accuracy in binding affinity calculations for various protein-ligand systems and is promising to be used in the postprocessing of structure-based virtual screening. Moreover, VAD-MM/GBSA outperformed prime MM/GBSA in Schrödinger software and showed remarkable predictive performance for specific protein targets, such as POL polyprotein, human immunodeficiency virus type 1 (HIV-1) protease, etc. Our study showed that the VAD-MM/GBSA method with little extra computational overhead provides a potential replacement of the MM/GBSA in AMBER software. An online web server of VAD-MMGBSA has been developed and is now available at http://cadd.zju.edu.cn/vdgb.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Entropia , Humanos , Ligantes , Ligação Proteica , Proteínas/metabolismo , Termodinâmica
17.
Immunology ; 161(4): 354-363, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32875554

RESUMO

T cells must display diversity regarding both the cell state and T-cell receptor (TCR) repertoire to provide effective immunity against pathogens; however, the generation and evolution of cellular T-cell heterogeneity in the adaptive immune system remains unclear. In the present study, a combination of multiplex PCR and immune repertoire sequencing (IR-seq) was used for a standardized analysis of the TCR ß-chain repertoire of CD4+ naive, CD4+ memory, CD8+ naive and CD8+ memory T cells. We showed that the T-cell subsets could be distinguished from each another with regard to the TCR ß-chain (TCR-ß) diversity, CDR3 length distribution and TRBV usage, which could be observed both in the preselection and in the post-selection repertoire. Moreover, the Dß-Jß and Vß-Dß combination patterns at the initial recombination step, template-independent insertion of nucleotides and inter-subset overlap were consistent between the pre- and post-selection repertoires, with a remarkably positive correlation. Taken together, these results support differentiation of the CD4+ and CD8+ T-cell subsets prior to thymic selection, and these differences survived both positive and negative selection. In conclusion, these findings provide deeper insight into the generation and evolution of TCR repertoire generation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Subpopulações de Linfócitos T/imunologia , Diferenciação Celular , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Recombinação V(D)J
18.
Cell Biol Toxicol ; 36(5): 509-515, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32172331

RESUMO

Colorectal cancer (CRC) liver metastasis (CLM) is the leading death cause of CRC patients, but there is no satisfied approach to treat CLM. Gut microbiota plays a pivotal role in CRC initiation and development. Targeting dysbiosis of the gut microbiota might open up new opportunities for CLM treatment. Here, we investigated the efficacy of sodium butyrate (NaB), a major product of gut microbial fermentation, in modulating gut microbiota in CLM mice. NaB supplement decreased mouse colon cancer CT26 cell liver metastasis in intrasplenic tumor injection model of BALB/c mice. Using 16S rRNA gene sequencing, we found altered microbiota composition in CLM mice, characterized by increases of Firmicutes and Proteobacteria. NaB beneficially changed dysbiosis in CLM mice. Functional analysis of the KEGG pathways showed that NaB changed pathways related to immune system diseases and primary immunodeficiency in CLM mice. In addition, NaB decreased T regulatory cells and increased natural killer T cells and T helper 17 cells, accordingly decreased IL-10 and increased IL-17 secretion in CLM mice liver. In conclusion, NaB beneficially modulated gut microbiota and improved host immune response in CLM mice. These findings demonstrate the therapeutic potential of NaB in CLM treatment.


Assuntos
Ácido Butírico/farmacologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Neoplasias Hepáticas/microbiologia , Neoplasias Hepáticas/secundário , Animais , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C
19.
Cancer Cell Int ; 19: 185, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346320

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is the most common kidney cancer and includes several molecular and histological subtypes with different clinical characteristics. The combination of DNA methylation and gene expression data can improve the classification of tumor heterogeneity, by incorporating differences at the epigenetic level and clinical features. METHODS: In this study, we identified the prognostic methylation and constructed specific prognosis-subgroups based on the DNA methylation spectrum of RCC from the TCGA database. RESULTS: Significant differences in DNA methylation profiles among the seven subgroups were revealed by consistent clustering using 3389 CpGs that indicated that were significant differences in prognosis. The specific DNA methylation patterns reflected differentially in the clinical index, including TNM classification, pathological grade, clinical stage, and age. In addition, 437 CpGs corresponding to 477 genes of 151 samples were identified as specific hyper/hypomethylation sites for each specific subgroup. A total of 277 and 212 genes corresponding to DNA methylation at promoter sites were enriched in transcription factor of GKLF and RREB-1, respectively. Finally, Bayesian network classifier with specific methylation sites was constructed and was used to verify the test set of prognoses into DNA methylation subgroups, which was found to be consistent with the classification results of the train set. DNA methylation-based classification can be used to identify the distinct subtypes of renal cell carcinoma. CONCLUSIONS: This study shows that DNA methylation-based classification is highly relevant for future diagnosis and treatment of renal cell carcinoma as it identifies the prognostic value of each epigenetic subtype.

20.
Langmuir ; 35(12): 4380-4386, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30873841

RESUMO

Hydrophobins are abundant amphipathic proteins produced by fungi. They have been interacting with oils in natural environments for millions of years; therefore, it is sensible to consider them as surfactants and dispersants for cleaning oil spills. To better understand the properties of these amphipathic proteins in seawater, a particular hydrophobin known as cerato-ulmin (CU; mass 7627 g/mol) was studied. CU is adept at forming strong membranes, as indicated by the capacity to stabilize gas-filled bubbles and oil-filled droplets with cylindrical and other nonspherical shapes. The limits of this unusual ability were tested using a wide variety of solvent conditions, including various salt solutions, alcohols, simple hydrocarbons (i.e., cyclohexane, dodecane), acids, and bases. CU concentrations ranged from 20 to 200 µg/mL. The bubbles and other structures made by CU in the presence of various gases span an enormous range of size, from nanometers to millimeters. After larger objects float to the surface, smaller structures remain, and these were found by light scattering to have a hydrodynamic diameter of ∼200 nm.


Assuntos
Proteínas Fúngicas/química , Micotoxinas/química , Óleos/química , Interações Hidrofóbicas e Hidrofílicas , Microbolhas , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA