Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 186(4): 803-820.e25, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36738734

RESUMO

Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Citoplasma , Neurônios Motores , Proteínas com Motivo de Reconhecimento de RNA/metabolismo
2.
Cell ; 177(6): 1480-1494.e19, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31056283

RESUMO

Varying pH of luminal fluid along the female reproductive tract is a physiological cue that modulates sperm motility. CatSper is a sperm-specific, pH-sensitive calcium channel essential for hyperactivated motility and male fertility. Multi-subunit CatSper channel complexes organize linear Ca2+ signaling nanodomains along the sperm tail. Here, we identify EF-hand calcium-binding domain-containing protein 9 (EFCAB9) as a bifunctional, cytoplasmic machine modulating the channel activity and the domain organization of CatSper. Knockout mice studies demonstrate that EFCAB9, in complex with the CatSper subunit, CATSPERζ, is essential for pH-dependent and Ca2+-sensitive activation of the CatSper channel. In the absence of EFCAB9, sperm motility and fertility is compromised, and the linear arrangement of the Ca2+ signaling domains is disrupted. EFCAB9 interacts directly with CATSPERζ in a Ca2+-dependent manner and dissociates at elevated pH. These observations suggest that EFCAB9 is a long-sought, intracellular, pH-dependent Ca2+ sensor that triggers changes in sperm motility.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Motilidade dos Espermatozoides/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Fertilidade , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatozoides/metabolismo
3.
Cell ; 166(4): 1028-1040, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27397506

RESUMO

Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50-80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whole-cell 4Pi single-molecule switching nanoscopy (W-4PiSMSN), an optical nanoscope that allows imaging of three-dimensional (3D) structures at 10- to 20-nm resolution throughout entire mammalian cells. We demonstrate the wide applicability of W-4PiSMSN across diverse research fields by imaging complex molecular architectures ranging from bacteriophages to nuclear pores, cilia, and synaptonemal complexes in large 3D cellular volumes.


Assuntos
Técnicas Citológicas/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Bacteriófagos/ultraestrutura , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Técnicas Citológicas/instrumentação , Complexo de Golgi/ultraestrutura , Masculino , Camundongos , Microscopia de Fluorescência/instrumentação , Imagem Individual de Molécula/instrumentação , Espermatócitos/ultraestrutura , Complexo Sinaptonêmico/ultraestrutura
4.
Nat Methods ; 19(5): 554-559, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35501386

RESUMO

DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution microscopy method that can acquire high-fidelity images at nanometer resolution. It suffers, however, from high background and slow imaging speed, both of which can be attributed to the presence of unbound fluorophores in solution. Here we present two-color fluorogenic DNA-PAINT, which uses improved imager probe and docking strand designs to solve these problems. These self-quenching single-stranded DNA probes are conjugated with a fluorophore and quencher at the terminals, which permits an increase in fluorescence by up to 57-fold upon binding and unquenching. In addition, the engineering of base pair mismatches between the fluorogenic imager probes and docking strands allowed us to achieve both high fluorogenicity and the fast binding kinetics required for fast imaging. We demonstrate a 26-fold increase in imaging speed over regular DNA-PAINT and show that our new implementation enables three-dimensional super-resolution DNA-PAINT imaging without optical sectioning.


Assuntos
DNA , Corantes Fluorescentes , Microscopia de Fluorescência/métodos
5.
Proc Natl Acad Sci U S A ; 119(42): e2202133119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215479

RESUMO

Unfolded protein response (UPR) is the mechanism by which cells control endoplasmic reticulum (ER) protein homeostasis. ER proteostasis is essential to adapt to cell proliferation and regeneration in development and tumorigenesis, but mechanisms linking UPR, growth control, and cancer progression remain unclear. Here, we report that the Ire1/Xbp1s pathway has surprisingly oncogenic and tumor-suppressive roles in a context-dependent manner. Activation of Ire1/Xbp1s up-regulates their downstream target Bip, which sequesters Yorkie (Yki), a Hippo pathway transducer, in the cytoplasm to restrict Yki transcriptional output. This regulation provides an endogenous defensive mechanism in organ size control, intestinal homeostasis, and regeneration. Unexpectedly, Xbp1 ablation promotes tumor overgrowth but suppresses invasiveness in a Drosophila cancer model. Mechanistically, hyperactivated Ire1/Xbp1s signaling in turn induces JNK-dependent developmental and oncogenic cell migration and epithelial-mesenchymal transition (EMT) via repression of Yki. In humans, a negative correlation between XBP1 and YAP (Yki ortholog) target gene expression specifically exists in triple-negative breast cancers (TNBCs), and those with high XBP1 or HSPA5 (Bip ortholog) expression have better clinical outcomes. In human TNBC cell lines and xenograft models, ectopic XBP1s or HSPA5 expression alleviates tumor growth but aggravates cell migration and invasion. These findings uncover a conserved crosstalk between the Ire1/Xbp1s and Hippo signaling pathways under physiological settings, as well as a crucial role of Bip-Yki interaction in tumorigenesis that is shared from Drosophila to humans.


Assuntos
Proteínas de Drosophila , Proteínas Serina-Treonina Quinases , Animais , Carcinogênese/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Endorribonucleases , Via de Sinalização Hippo , Humanos , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
6.
Nat Methods ; 17(2): 225-231, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907447

RESUMO

Combining the molecular specificity of fluorescent probes with three-dimensional imaging at nanoscale resolution is critical for investigating the spatial organization and interactions of cellular organelles and protein complexes. We present a 4Pi single-molecule switching super-resolution microscope that enables ratiometric multicolor imaging of mammalian cells at 5-10-nm localization precision in three dimensions using 'salvaged fluorescence'. Imaging two or three fluorophores simultaneously, we show fluorescence images that resolve the highly convoluted Golgi apparatus and the close contacts between the endoplasmic reticulum and the plasma membrane, structures that have traditionally been the imaging realm of electron microscopy. The salvaged fluorescence approach is equally applicable in most single-objective microscopes.


Assuntos
Imagem Óptica , Frações Subcelulares/metabolismo , Animais , Humanos , Organelas/metabolismo
7.
Eur Phys J E Soft Matter ; 46(6): 42, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294385

RESUMO

We present and analyze video-microscopy-based single-particle-tracking measurements of the budding yeast (Saccharomyces cerevisiae) membrane protein, Pma1, fluorescently labeled either by direct fusion to the switchable fluorescent protein, mEos3.2, or by a novel, light-touch, labeling scheme, in which a 5 amino acid tag is directly fused to the C-terminus of Pma1, which then binds mEos3.2. The track diffusivity distributions of these two populations of single-particle tracks differ significantly, demonstrating that labeling method can be an important determinant of diffusive behavior. We also applied perturbation expectation maximization (pEMv2) (Koo and Mochrie in Phys Rev E 94(5):052412, 2016), which sorts trajectories into the statistically optimum number of diffusive states. For both TRAP-labeled Pma1 and Pma1-mEos3.2, pEMv2 sorts the tracks into two diffusive states: an essentially immobile state and a more mobile state. However, the mobile fraction of Pma1-mEos3.2 tracks is much smaller ([Formula: see text]) than the mobile fraction of TRAP-labeled Pma1 tracks ([Formula: see text]). In addition, the diffusivity of Pma1-mEos3.2's mobile state is several times smaller than the diffusivity of TRAP-labeled Pma1's mobile state. Thus, the two different labeling methods give rise to very different overall diffusive behaviors. To critically assess pEMv2's performance, we compare the diffusivity and covariance distributions of the experimental pEMv2-sorted populations to corresponding theoretical distributions, assuming that Pma1 displacements realize a Gaussian random process. The experiment-theory comparisons for both the TRAP-labeled Pma1 and Pma1-mEos3.2 reveal good agreement, bolstering the pEMv2 approach.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Celular/metabolismo , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Bioessays ; 42(6): e1900145, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32342554

RESUMO

The examination of the complex cell biology of the human malaria parasite Plasmodium falciparum usually relies on the time-consuming generation of transgenic parasites. Here, metabolic labeling and click chemistry are employed as a fast transfection-independent method for the microscopic examination of protein S-palmitoylation, an important post-translational modification during the asexual intraerythrocytic replication of P. falciparum. Applying various microscopy approaches such as confocal, single-molecule switching, and electron microscopy, differences in the extent of labeling within the different asexual developmental stages of P. falciparum and the host erythrocytes over time are observed.


Assuntos
Malária Falciparum , Plasmodium falciparum , Química Click , Eritrócitos , Humanos , Microscopia Eletrônica
9.
Opt Lett ; 45(13): 3765-3768, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630949

RESUMO

Interferometric single-molecule localization microscopy (iPALM, 4Pi-SMS) uses multiphase interferometry to localize single fluorophores and achieves nanometer isotropic resolution in 3D. The current data analysis workflow, however, fails to reach the theoretical resolution limit due to the suboptimal localization algorithm. Here, we develop a method to fit an experimentally derived point spread function (PSF) model to the interference 4Pi-PSF. As the interference phase is not fixed with respect to the shape of the PSF, we decoupled the phase term in the model from the 3D position of the PSF. The fitter can reliably infer the interference period even without introducing astigmatism, reducing the complexity of the microscope. Using a spline-interpolated experimental PSF model and by fitting all phase images globally, we show on simulated data that we can achieve the theoretical limit of 3D resolution, the Cramér-Rao lower bound (CRLB), also for the 4Pi microscope.

10.
Proc Natl Acad Sci U S A ; 114(23): 6098-6103, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533372

RESUMO

Type III protein secretion machines have evolved to deliver bacterially encoded effector proteins into eukaryotic cells. Although electron microscopy has provided a detailed view of these machines in isolation or fixed samples, little is known about their organization in live bacteria. Here we report the visualization and characterization of the Salmonella type III secretion machine in live bacteria by 2D and 3D single-molecule switching superresolution microscopy. This approach provided access to transient components of this machine, which previously could not be analyzed. We determined the subcellular distribution of individual machines, the stoichiometry of the different components of this machine in situ, and the spatial distribution of the substrates of this machine before secretion. Furthermore, by visualizing this machine in Salmonella mutants we obtained major insights into the machine's assembly. This study bridges a major resolution gap in the visualization of this nanomachine and may serve as a paradigm for the examination of other bacterially encoded molecular machines.


Assuntos
Imagem Individual de Molécula/métodos , Sistemas de Secreção Tipo III/fisiologia , Sistemas de Secreção Tipo III/ultraestrutura , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Análise por Conglomerados , Modelos Moleculares , Transporte Proteico , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/química
11.
Plant J ; 90(1): 3-16, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28081290

RESUMO

Arabidopsis hypersensitive-induced reaction (AtHIR) proteins function in plant innate immunity. However, the underlying mechanisms by which AtHIRs participate in plant immunity remain elusive. Here, using VA-TIRFM and FLIM-FRET, we revealed that AtHIR1 is present in membrane microdomains and co-localizes with the membrane microdomain marker REM1.3. Single-particle tracking analysis revealed that membrane microdomains and the cytoskeleton, especially microtubules, restrict the lateral mobility of AtHIR1 at the plasma membrane and facilitate its oligomerization. Furthermore, protein proximity index measurements, fluorescence cross-correlation spectroscopy, and biochemical experiments demonstrated that the formation of the AtHIR1 complex upon pathogen perception requires intact microdomains and cytoskeleton. Taken together, these findings suggest that microdomains and the cytoskeleton constrain AtHIR1 dynamics, promote AtHIR1 oligomerization, and increase the efficiency of the interactions of AtHIR1 with components of the AtHIR1 complex in response to pathogens, thus providing valuable insight into the mechanisms of defense-related responses in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citoesqueleto/metabolismo , Microdomínios da Membrana/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citoesqueleto/genética , Microdomínios da Membrana/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia
12.
J Biol Chem ; 290(45): 26978-26993, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26396197

RESUMO

Both phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are independent plasma membrane (PM) determinant lipids that are essential for multiple cellular functions. However, their nanoscale spatial organization in the PM remains elusive. Using single-molecule superresolution microscopy and new photoactivatable fluorescence probes on the basis of pleckstrin homology domains that specifically recognize phosphatidylinositides in insulin-secreting INS-1 cells, we report that the PI(4,5)P2 probes exhibited a remarkably uniform distribution in the major regions of the PM, with some sparse PI(4,5)P2-enriched membrane patches/domains of diverse sizes (383 ± 14 nm on average). Quantitative analysis revealed a modest concentration gradient that was much less steep than previously thought, and no densely packed PI(4,5)P2 nanodomains were observed. Live-cell superresolution imaging further demonstrated the dynamic structural changes of those domains in the flat PM and membrane protrusions. PI4P and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) showed similar spatial distributions as PI(4,5)P2. These data reveal the nanoscale landscape of key inositol phospholipids in the native PM and imply a framework for local cellular signaling and lipid-protein interactions at a nanometer scale.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Animais , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Chlorocebus aethiops , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Proteínas Luminescentes/metabolismo , Microtúbulos/metabolismo , Nanotecnologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais , Sintaxina 1/metabolismo
13.
Biophys J ; 108(2): 251-60, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25606674

RESUMO

Total internal reflection fluorescence microscope has often been used to study the molecular mechanisms underlying vesicle exocytosis. However, the spatial occurrence of the fusion events within a single cell is not frequently explored due to the lack of sensitive and accurate computer-assisted programs to analyze large image data sets. Here, we have developed an image analysis platform for the nonbiased identification of different types of vesicle fusion events with high accuracy in different cell types. By performing spatiotemporal analysis of stimulus-evoked exocytosis in insulin-secreting INS-1 cells, we statistically prove that individual vesicle fusion events are clustered at hotspots. This spatial pattern disappears upon the disruption of either the actin or the microtubule network; this disruption also severely inhibits evoked exocytosis. By demonstrating that newcomer vesicles are delivered from the cell interior to the surface membrane for exocytosis, we highlight a previously unappreciated mechanism in which the cytoskeleton-dependent transportation of secretory vesicles organizes exocytosis hotspots in endocrine cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Exocitose , Células Secretoras de Insulina/metabolismo , Animais , Linhagem Celular , Fusão de Membrana , Microscopia de Fluorescência/métodos , Ratos , Vesículas Secretórias/metabolismo
14.
Nat Methods ; 9(7): 727-9, 2012 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-22581370

RESUMO

Monomeric (m)Eos2 is an engineered photoactivatable fluorescent protein widely used for super-resolution microscopy. We show that mEos2 forms oligomers at high concentrations and forms aggregates when labeling membrane proteins, limiting its application as a fusion partner. We solved the crystal structure of tetrameric mEos2 and rationally designed improved versions, mEos3.1 and mEos3.2, that are truly monomeric, are brighter, mature faster and exhibit higher photon budget and label density.


Assuntos
Proteínas de Fluorescência Verde , Proteínas Luminescentes , Microscopia de Fluorescência/métodos , Engenharia de Proteínas/métodos , Animais , Células COS , Chlorocebus aethiops , Cromatografia em Gel , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Modelos Moleculares , Processos Fotoquímicos , Plasmídeos , Conformação Proteica , Transfecção , Proteína Vermelha Fluorescente
15.
Proc Natl Acad Sci U S A ; 109(12): 4455-60, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22375034

RESUMO

Reversibly switchable fluorescent proteins (RSFPs) have attracted widespread interest for emerging techniques including repeated tracking of protein behavior and superresolution microscopy. Among the limited number of RSFPs available, only Dronpa is widely employed for most cell biology applications due to its monomeric and other favorable photochemical properties. Here we developed a series of monomeric green RSFPs with beneficial optical characteristics such as high photon output per switch, high photostability, a broad range of switching rate, and pH-dependence, which make them potentially useful for various applications. One member of this series, mGeos-M, exhibits the highest photon budget and localization precision potential among all green RSFPs. We propose mGeos-M as a candidate to replace Dronpa for applications such as dynamic tracking, dual-color superresolution imaging, and optical lock-in detection.


Assuntos
Microscopia de Fluorescência/métodos , Linhagem Celular , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Cinética , Microscopia/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Mutação , Fotoquímica/métodos , Fótons , Espectrofotometria/métodos
16.
Biophys J ; 106(11): 2443-9, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24896123

RESUMO

Single molecule fitting-based superresolution microscopy achieves sub-diffraction-limit image resolution but suffers from a need for long acquisition times to gather enough molecules. Several methods have recently been developed that analyze high molecule density images but most are only applicable to two dimensions. In this study, we implemented a high-density superresolution localization algorithm based on compressed sensing and a biplane approach that provides three-dimensional information about molecules, achieving super-resolution imaging at higher molecule densities than those achieved using the conventional single molecule fitting method.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Animais , Células COS , Chlorocebus aethiops , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos
17.
Science ; 383(6686): eabm9903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422126

RESUMO

All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, large supramolecular complexes often activate immune proteins for protection. In this work, we resolved the native structure of a massive host-defense complex that polymerizes 30,000 guanylate-binding proteins (GBPs) over the surface of gram-negative bacteria inside human cells. Construction of this giant nanomachine took several minutes and remained stable for hours, required guanosine triphosphate hydrolysis, and recruited four GBPs plus caspase-4 and Gasdermin D as a cytokine and cell death immune signaling platform. Cryo-electron tomography suggests that GBP1 can adopt an extended conformation for bacterial membrane insertion to establish this platform, triggering lipopolysaccharide release that activated coassembled caspase-4. Our "open conformer" model provides a dynamic view into how the human GBP1 defense complex mobilizes innate immunity to infection.


Assuntos
Bactérias , Infecções Bacterianas , Membrana Celular , Proteínas de Ligação ao GTP , Reconhecimento da Imunidade Inata , Humanos , Citocinas/química , Tomografia com Microscopia Eletrônica , Proteínas de Ligação ao GTP/química , Guanosina Trifosfato/química , Hidrólise , Imunidade Celular , Microscopia Crioeletrônica , Gasderminas/química , Proteínas de Ligação a Fosfato/química , Conformação Proteica , Membrana Celular/química , Membrana Celular/imunologia , Caspases Iniciadoras/química , Infecções Bacterianas/imunologia , Bactérias/imunologia
18.
Nat Metab ; 6(2): 238-253, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278946

RESUMO

Biphasic glucose-stimulated insulin secretion (GSIS) is essential for blood glucose regulation, but a mechanistic model incorporating the recently identified islet ß cell heterogeneity remains elusive. Here, we show that insulin secretion is spatially and dynamically heterogeneous across the islet. Using a zinc-based fluorophore with spinning-disc confocal microscopy, we reveal that approximately 40% of islet cells, which we call readily releasable ß cells (RRßs), are responsible for 80% of insulin exocytosis events. Although glucose up to 18.2 mM fully mobilized RRßs to release insulin synchronously (first phase), even higher glucose concentrations enhanced the sustained secretion from these cells (second phase). Release-incompetent ß cells show similarities to RRßs in glucose-evoked Ca2+ transients but exhibit Ca2+-exocytosis coupling deficiency. A decreased number of RRßs and their altered secretory ability are associated with impaired GSIS progression in ob/ob mice. Our data reveal functional heterogeneity at the level of exocytosis among ß cells and identify RRßs as a subpopulation of ß cells that make a disproportionally large contribution to biphasic GSIS from mouse islets.


Assuntos
Insulinas Bifásicas , Células Secretoras de Insulina , Camundongos , Animais , Secreção de Insulina , Insulinas Bifásicas/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Exocitose/fisiologia
19.
Nat Commun ; 14(1): 8063, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052794

RESUMO

Direct, site-specific methods of protein functionalization are highly desirable for biotechnology. However, such methods are challenging due to the difficulty of chemically differentiating a single site within a large protein. Herein, we propose "metal binding targeting" strategy and develop a Copper Assisted Sequence-specific conjugation Tag (CAST) method to achieve rapid (second order rate 8.1 M-1 s-1), site-specific protein backbone chemical modification with pinpoint accuracy. We demonstrate the versatility of CAST conjugation by preparing various on-demand modified recombinant proteins, including a homogeneous antibody-drug conjugate with high plasma stability and potent efficacy in vitro and in vivo. Thus, CAST provides an efficient and quantitative method to site-specifically attach payloads on large, native proteins.


Assuntos
Cobre , Imunoconjugados , Amidas , Proteínas
20.
Front Chem ; 10: 864701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620648

RESUMO

DNA point accumulation in nanoscale topography (DNA-PAINT) is an easy-to-implement approach for localization-based super-resolution imaging. Conventional DNA-PAINT imaging typically requires tens of thousands of frames of raw data to reconstruct one super-resolution image, which prevents its potential application for live imaging. Here, we introduce a new DNA-PAINT labeling method that allows for imaging of microtubules with both DNA-PAINT and widefield illumination. We develop a U-Net-based neural network, namely, U-PAINT to accelerate DNA-PAINT imaging from a widefield fluorescent image and a sparse single-molecule localization image. Compared with the conventional method, U-PAINT only requires one-tenth of the original raw data, which permits fast imaging and reconstruction of super-resolution microtubules and can be adopted to analyze other SMLM datasets. We anticipate that this machine learning method enables faster and even live-cell DNA-PAINT imaging in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA