Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 74(6): 1123-1137.e6, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31053472

RESUMO

Abnormal processing of stressed replication forks by nucleases can cause fork collapse, genomic instability, and cell death. Despite its importance, it is poorly understood how the cell properly controls nucleases to prevent detrimental fork processing. Here, we report a signaling pathway that controls the activity of exonuclease Exo1 to prevent aberrant fork resection during replication stress. Our results indicate that replication stress elevates intracellular Ca2+ concentration ([Ca2+]i), leading to activation of CaMKK2 and the downstream kinase 5' AMP-activated protein kinase (AMPK). Following activation, AMPK directly phosphorylates Exo1 at serine 746 to promote 14-3-3 binding and inhibit Exo1 recruitment to stressed replication forks, thereby avoiding unscheduled fork resection. Disruption of this signaling pathway results in excessive ssDNA, chromosomal instability, and hypersensitivity to replication stress inducers. These findings reveal a link between [Ca2+]i and the replication stress response as well as a function of the Ca2+-CaMKK2-AMPK signaling axis in safeguarding fork structure to maintain genome stability.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Cálcio/metabolismo , Enzimas Reparadoras do DNA/genética , Reparo do DNA , Replicação do DNA , Exodesoxirribonucleases/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sinalização do Cálcio/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Cromatina/química , Cromatina/metabolismo , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Mol Cell Proteomics ; 22(7): 100582, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37225018

RESUMO

Carbon metabolism is central to photosynthetic organisms and involves the coordinated operation and regulation of numerous proteins. In cyanobacteria, proteins involved in carbon metabolism are regulated by multiple regulators including the RNA polymerase sigma factor SigE, the histidine kinases Hik8, Hik31 and its plasmid-borne paralog Slr6041, and the response regulator Rre37. To understand the specificity and the cross-talk of such regulations, we simultaneously and quantitatively compared the proteomes of the gene knockout mutants for the regulators. A number of proteins showing differential expression in one or more mutants were identified, including four proteins that are unanimously upregulated or downregulated in all five mutants. These represent the important nodes of the intricate and elegant regulatory network for carbon metabolism. Moreover, serine phosphorylation of PII, a key signaling protein sensing and regulating in vivo carbon/nitrogen (C/N) homeostasis through reversible phosphorylation, is massively increased with a concomitant significant decrease in glycogen content only in the hik8-knockout mutant, which also displays impaired dark viability. An unphosphorylatable PII S49A substitution restored the glycogen content and rescued the dark viability of the mutant. Together, our study not only establishes the quantitative relationship between the targets and the corresponding regulators and elucidated their specificity and cross-talk but also unveils that Hik8 regulates glycogen accumulation through negative regulation of PII phosphorylation, providing the first line of evidence that links the two-component system with PII-mediated signal transduction and implicates them in the regulation of carbon metabolism.


Assuntos
Carbono , Synechocystis , Fosforilação , Carbono/metabolismo , Proteômica , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicogênio/metabolismo , Nitrogênio , Regulação Bacteriana da Expressão Gênica
3.
New Phytol ; 243(3): 936-950, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38831647

RESUMO

Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.


Assuntos
Proteínas de Bactérias , Carbono , Glicosiltransferases , Synechocystis , Uridina Difosfato N-Acetilglicosamina , Synechocystis/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Carbono/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Uridina Difosfato N-Acetilglicosamina/metabolismo , Regulação Bacteriana da Expressão Gênica , Deleção de Genes
4.
Mol Cell Proteomics ; 21(12): 100440, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356940

RESUMO

Ascorbate peroxidase (APEX)-based proximity labeling coupled with mass spectrometry has a great potential for spatiotemporal identification of proteins proximal to a protein complex of interest. Using this approach is feasible to define the proteome neighborhood of important protein complexes in a popular photosynthetic model cyanobacterium Synechocystis sp. PCC6803 (hereafter named as Synechocystis). To this end, we developed a robust workflow for APEX2-based proximity labeling in Synechocystis and used the workflow to identify proteins proximal to the photosystem II (PS II) oxygen evolution complex (OEC) through fusion APEX2 with a luminal OEC subunit, PsbO. In total, 38 integral membrane proteins (IMPs) and 93 luminal proteins were identified as proximal to the OEC. A significant portion of these proteins are involved in PS II assembly, maturation, and repair, while the majority of the rest were not previously implicated with PS II. The IMPs include subunits of PS II and cytochrome b6/f, but not of photosystem I (except for PsaL) and ATP synthases, suggesting that the latter two complexes are spatially separated from the OEC with a distance longer than the APEX2 labeling radius. Besides, the topologies of six IMPs were successfully predicted because their lumen-facing regions exclusively contain potential APEX2 labeling sites. The luminal proteins include 66 proteins with a predicted signal peptide and 57 proteins localized also in periplasm, providing important targets to study the regulation and selectivity of protein translocation. Together, we not only developed a robust workflow for the application of APEX2-based proximity labeling in Synechocystis and showcased the feasibility to define the neighborhood proteome of an important protein complex with a short radius but also discovered a set of the proteins that potentially interact with and regulate PS II structure and function.


Assuntos
Complexo de Proteína do Fotossistema II , Synechocystis , Complexo de Proteína do Fotossistema II/metabolismo , Proteoma/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Synechocystis/metabolismo
5.
J Proteome Res ; 22(4): 1255-1269, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36930737

RESUMO

Spatial proteome reorganization in response to a changing environment represents a different layer of adaptation mechanism in addition to differential expression of a subset of stress responsive genes in photosynthetic organisms. Profiling such reorganization events is critically important to extend our understanding how photosynthetic organisms adapt to adverse environments. Thus, we treated a unicellular photosynthetic model cyanobacterium, Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), with five different types of abiotic stresses including nitrogen starvation, iron deficiency, cold, heat, and darkness, and systematically identified proteins showing stress-induced differential expression and/or redistribution between the membrane and the soluble fractions using a quantitative proteomics approach. A number of proteins showing such a redistribution in response to a single or multiple types of abiotic stresses were identified. These include 12 ribosomal proteins displaying unanimous cold-induced redistribution to the membrane and the protein FurA, a master regulator of iron acquisition, displaying iron deficiency- and nitrogen starvation-induced redistribution to the membrane. Such findings shed light on a novel regulatory mechanism underlying the corresponding stress responses, and establish the results in the present study as an important resource for future studies intended to understand how photosynthetic organisms cope with adverse environments.


Assuntos
Deficiências de Ferro , Synechocystis , Humanos , Proteoma/genética , Proteoma/metabolismo , Estresse Fisiológico , Synechocystis/genética , Synechocystis/metabolismo , Nitrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Proteomics ; 20(12): e1900255, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32419311

RESUMO

The recent development and implementation of the advanced peak determination (APD) algorithm with MS instrument dramatically increased the sampling of low abundance features for MS/MS fragmentation. After in-depth evaluation, it is found that with APD on, many chimeric spectra are acquired through co-fragmentation of high abundance contaminants with low abundance targets, and such co-fragmentations are largely avoided when APD is off. To evaluate whether such a co-fragmentation could significantly distort the accuracy of the isobaric-labeling based quantitation of the low abundance target, a single-shot TMT experiment is performed using a two-proteome model, whereby each TMT channel contains premixed peptides from human and a cyanobacterium with a known ratio. Unexpectedly, it is found that APD does not significantly distort TMT ratios, probably because the majority of the APD-specific chimeric spectra are not identifiable. Nevertheless, a few examples of significant distortion of TMT ratios of low abundance peptides caused by APD is found through manual inspection, and suggests that APD should be off in a single-shot TMT experiment to avoid the laborious and time-costing manual inspection.


Assuntos
Marcação por Isótopo/métodos , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Cromatografia Líquida/métodos , Células HEK293 , Humanos , Peptídeos/metabolismo , Proteoma/metabolismo , Reprodutibilidade dos Testes , Synechocystis/metabolismo , Espectrometria de Massas em Tandem/métodos
7.
Biochem J ; 476(13): 1911-1926, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31196894

RESUMO

The mitogen-activated protein kinase ERK1/2 (ERKs, extracellular-regulated protein kinases) plays important roles in a wide spectrum of cellular processes and have been implicated in many disease states. The spatiotemporal regulation of ERK activity has been extensively studied. However, scarce information has been available regarding the quality control of the kinases to scavenge malfunctioning ERKs. Using site-specific mutagenesis and mass spectrometry, we found that the disruption of the conserved H-bond between Y210 and E237 of ERK1 through point mutation at or naturally occurring nitration on Y210 initiates a quality control program dependent on chaperon systems and CHIP (C-terminal of Hsp70-interacting protein)-mediated ubiquitination and degradation. The H-bond is also important for the quality control of ERK2, but through a distinct mechanism. These findings clearly demonstrate how malfunctioning ERKs are eliminated when cells are in certain stress conditions or unhealthy states, and could represent a general mechanism for scavenging malfunctioning kinases in stress conditions.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Mutação Puntual , Ubiquitina-Proteína Ligases/genética
8.
PLoS Biol ; 14(9): e1002550, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27618482

RESUMO

Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been largely restricted to a small subset of MAPK cascades. Our previous study has characterized an Arabidopsis bushy and dwarf1 (bud1) mutant, in which the MAP Kinase Kinase 7 (MKK7) was constitutively activated, resulting in multiple phenotypic alterations. In this study, we found that MPK3 and MPK6 are the substrates for phosphorylation by MKK7 in planta. Genetic analysis showed that MKK7-MPK6 cascade is specifically responsible for the regulation of shoot branching, hypocotyl gravitropism, filament elongation, and lateral root formation, while MKK7-MPK3 cascade is mainly involved in leaf morphology. We further demonstrated that the MKK7-MPK6 cascade controls shoot branching by phosphorylating Ser 337 on PIN1, which affects the basal localization of PIN1 in xylem parenchyma cells and polar auxin transport in the primary stem. Our results not only specify the functions of the MKK7-MPK6 cascade but also reveal a novel mechanism for PIN1 phosphorylation, establishing a molecular link between the MAPK cascade and auxin-regulated plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , MAP Quinase Quinase 7/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Brotos de Planta/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Ácidos Indolacéticos/metabolismo , MAP Quinase Quinase 7/química , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana Transportadoras/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/química , Fosforilação , Desenvolvimento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Transporte Proteico
9.
Mol Cell Proteomics ; 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500030

RESUMO

The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (Δhik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly similar to that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found the majority of proteins of plasmid origin were significantly upregulated in Δhik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.

10.
Mol Cell Proteomics ; 16(7): 1258-1274, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28668777

RESUMO

The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (Δhik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly like that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found most proteins of plasmid origin were significantly upregulated in Δhik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina Quinase/genética , Proteômica/métodos , Synechocystis/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Viabilidade Microbiana , Mutação , Fotossíntese , Estresse Fisiológico , Synechocystis/genética
11.
Yi Chuan ; 41(9): 863-874, 2019 Sep 20.
Artigo em Zh | MEDLINE | ID: mdl-31549684

RESUMO

Membrane proteins play important functions not only as receptors and transporters, but also in many other important intracellular functions such as photosynthetic and respiratory electron transport. Identification of membrane proteins is a necessary step to understand their functions. Membrane proteins are generally highly hydrophobic and difficult to be resolved by aqueous solutions, and large-scale proteomic identification of membrane proteins has been a great technical challenge. Significant efforts have been invested in the field to improve the solubility of membrane proteins in aqueous solutions that are compatible for mass spectrometry analysis. This review summarizes the main technological achievements in the field of membrane proteomics particularly for the improvement of membrane protein identification, and uses the photosynthetic model cyanobacterium Synechocystis sp. PCC6803 as an example to illustrate how technology advances push forward the field in terms of the increased coverage of membrane proteome identification.


Assuntos
Proteoma , Proteômica/tendências , Synechocystis/genética , Proteínas de Bactérias/genética , Espectrometria de Massas
12.
Proteomics ; 18(20): e1800046, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30194912

RESUMO

The histidine kinase Hik33 plays a central role in acclimation to changing environments in cyanobacteria. Deletion of hik33 induces a strong stress-like response in Synechocystis sp. PCC 6803 (Synechocystis) as represented by repressed photoautotrophic growth and photosynthesis, and differential expression of stress-responsive proteins. In contrast, the photomixotrophic growth of the hik33-deletion mutant (Δhik33) with glucose as the exogenous carbon source is only marginally repressed. To investigate how glucose rescues the growth of Δhik33, the proteomes of the photomixotrophically growing wild-type (WT) and the mutant strains of Synechocystis are quantitatively analyzed. It is found that glucose induces upregulation of the oxidative pentose phosphate (OPP) pathway. Depletion of glucose-6-phosphate dehydrogenase (G6PDH), which catalyzes the first and the rate-limiting step of the OPP pathway, significantly inhibits the photomixotrophic growth of Δhik33 but not of the WT. The result suggests that the OPP pathway, which is usually nonfunctional in the photomixotrophically growing WT, plays a major role in the photomixotrophic growth of Δhik33.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/farmacologia , Mutação , Via de Pentose Fosfato , Deleção de Sequência , Synechocystis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Estresse Oxidativo , Fotossíntese , Synechocystis/efeitos dos fármacos , Synechocystis/genética , Synechocystis/metabolismo
13.
Mol Cell Proteomics ; 14(2): 340-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25505158

RESUMO

Large-scale quantitative evaluation of the tightness of membrane association for nontransmembrane proteins is important for identifying true peripheral membrane proteins with functional significance. Herein, we simultaneously ranked more than 1000 proteins of the photosynthetic model organism Synechocystis sp. PCC 6803 for their relative tightness of membrane association using a proteomic approach. Using multiple precisely ranked and experimentally verified peripheral subunits of photosynthetic protein complexes as the landmarks, we found that proteins involved in two-component signal transduction systems and transporters are overall tightly associated with the membranes, whereas the associations of ribosomal proteins are much weaker. Moreover, we found that hypothetical proteins containing the same domains generally have similar tightness. This work provided a global view of the structural organization of the membrane proteome with respect to divergent functions, and built the foundation for future investigation of the dynamic membrane proteome reorganization in response to different environmental or internal stimuli.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/química , Proteínas de Membrana/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteoma/química , Proteoma/metabolismo
14.
Biol Chem ; 397(11): 1173-1185, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27276529

RESUMO

The protein inhibitor of activated STAT1 (PIAS1) plays important roles in regulating virus-induced chronic hepatitis, but the interaction between hepatitis B virus (HBV) and hPIAS1 is not clear. Our aim was to verify if HBV encoding proteins enhance the transcription of hPIAS1 and which cis-elements and transcription factors were involved in the mechanism. In order to do, so a series of molecular biological methods, along with functional and histological studies, were performed. We found that the HBV surface protein (HBs) enhanced hPIAS1 transcription through the activities of TAL1, E47, myogenin (MYOG), and NFI, dependent on the activation of p38MAPK and ERK signaling pathways in vitro, which might contribute to the ineffectiveness of treatment in CHB patients. Furthermore, liver samples from patients with high HBsAg levels and HBV DNA displayed increased hPIAS1 expression and high levels of TAL1, E47, MYOG, and NFI, compared to those patients with low HBsAg levels and HBV DNA, and healthy controls. These findings suggest that the HBs protein-induced hPIAS1 transcription requires TAL1, E47, MYOG, NFI, and MAPK signal pathways. It provides new potential targets for antiviral therapeutic strategies for controlling HBV-associated diseases.


Assuntos
Vírus da Hepatite B/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Nucleares/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Transcrição Gênica , Proteínas do Envelope Viral/metabolismo , Adulto , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células CHO , Cricetinae , Cricetulus , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Hep G2 , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miogenina/genética , Miogenina/metabolismo , Fatores de Transcrição NFI/deficiência , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fosforilação , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fator 3 de Transcrição/deficiência , Fator 3 de Transcrição/genética , Fator 3 de Transcrição/metabolismo
15.
PLoS Genet ; 9(5): e1003517, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23696751

RESUMO

Clathrin and the multi-subunit adaptor protein complex AP2 are central players in clathrin-mediated endocytosis by which the cell selectively internalizes surface materials. Here, we report the essential role of clathrin and AP2 in phagocytosis of apoptotic cells. In Caenorhabditis elegans, depletion of the clathrin heavy chain CHC-1 and individual components of AP2 led to a significant accumulation of germ cell corpses, which resulted from defects in both cell corpse engulfment and phagosome maturation required for corpse removal. CHC-1 and AP2 components associate with phagosomes in an inter-dependent manner. Importantly, we found that the phagocytic receptor CED-1 interacts with the α subunit of AP2, while the CED-6/Gulp adaptor forms a complex with both CHC-1 and the AP2 complex, which likely mediates the rearrangement of the actin cytoskeleton required for cell corpse engulfment triggered by the CED-1 signaling pathway. In addition, CHC-1 and AP2 promote the phagosomal association of LST-4/Snx9/18/33 and DYN-1/dynamin by forming a complex with them, thereby facilitating the maturation of phagosomes necessary for corpse degradation. These findings reveal a non-classical role of clathrin and AP2 and establish them as indispensable regulators in phagocytic receptor-mediated apoptotic cell clearance.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Caenorhabditis elegans/metabolismo , Clatrina/metabolismo , Fagocitose/genética , Complexo 2 de Proteínas Adaptadoras/genética , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Endocitose , Células Germinativas/patologia , Proteínas de Membrana/metabolismo , Fagocitose/fisiologia , Fagossomos/genética , Fagossomos/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais
16.
Photosynth Res ; 126(2-3): 203-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25862646

RESUMO

The proteome of the photosynthetic model organism Synechocystis sp. PCC 6803 has been extensively analyzed in the last 15 years for the purpose of identifying proteins specifically expressed in subcellular compartments or differentially expressed in different environmental or internal conditions. This review summarizes the progress achieved so far with the emphasis on the impact of different techniques, both in sample preparation and protein identification, on the increasing coverage of proteome identification. In addition, this review evaluates the current completeness of proteome identification, and provides insights on the potential factors that could affect the complete identification of the Synechocystis proteome.


Assuntos
Proteoma , Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Proteômica
17.
J Huazhong Univ Sci Technolog Med Sci ; 34(3): 348-353, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24939297

RESUMO

Recently, suppressor of cytokine signaling-3 (SOCS3) has been shown to be an inducible endogenous negative regulator of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway which is relevant in inflammatory response, while its functions in acute liver failure and HBV-induced acute-on-chronic liver failure (HBV-ACLF) have not been fully elucidated. In this study, we explored the role of SOCS3 in the development of mouse hepatitis virus strain 3 (MHV-3)-induced acute liver failure and its expression in liver and peripheral blood mononuclear cells (PBMCs) of patients with HBV-ACLF. Inflammation-related gene expression was detected by real-time PCR, immunohistochemistry and Western blotting. The correlation between SOCS3 level and liver injury was studied. Our results showed that the SOCS3 expression was significantly elevated in both the liver tissue and PBMCs from patients with HBV-ACLF compared to mild chronic hepatitis B (CHB). Moreover, a time course study showed that SOCS3 level was increased remarkably in the liver of BALB/cJ mice at 72 h post-infection. Pro-inflammatory cytokines, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, were also increased significantly at 72 h post-infection. There was a close correlation between hepatic SOCS3 level and IL-6, and the severity of liver injury defined by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, respectively. These data suggested that SOCS3 may play a pivotal role in the pathogenesis of MHV-3-induced acute liver failure and HBV-ACLF.


Assuntos
Doença Hepática Terminal/virologia , Hepatite Viral Animal/virologia , Falência Hepática Aguda/virologia , Vírus da Hepatite Murina/fisiologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Adulto , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Western Blotting , Doença Hepática Terminal/genética , Doença Hepática Terminal/patologia , Feminino , Expressão Gênica , Hepatite Viral Animal/genética , Hepatite Viral Animal/patologia , Interações Hospedeiro-Patógeno , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Falência Hepática Aguda/genética , Falência Hepática Aguda/patologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/sangue , Proteínas Supressoras da Sinalização de Citocina/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
18.
Mol Plant ; 17(1): 199-213, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38018035

RESUMO

Protein phosphorylation regulates a variety of important cellular and physiological processes in plants. In-depth profiling of plant phosphoproteomes has been more technically challenging than that of animal phosphoproteomes. This is largely due to the need to improve protein extraction efficiency from plant cells, which have a dense cell wall, and to minimize sample loss resulting from the stringent sample clean-up steps required for the removal of a large amount of biomolecules interfering with phosphopeptide purification and mass spectrometry analysis. To this end, we developed a method with a streamlined workflow for highly efficient purification of phosphopeptides from tissues of various green organisms including Arabidopsis, rice, tomato, and Chlamydomonas reinhardtii, enabling in-depth identification with high quantitative reproducibility of about 11 000 phosphosites, the greatest depth achieved so far with single liquid chromatography-mass spectrometry (LC-MS) runs operated in a data-dependent acquisition (DDA) mode. The mainstay features of the method are the minimal sample loss achieved through elimination of sample clean-up before protease digestion and of desalting before phosphopeptide enrichment and hence the dramatic increases of time- and cost-effectiveness. The method, named GreenPhos, combined with single-shot LC-MS, enabled in-depth quantitative identification of Arabidopsis phosphoproteins, including differentially phosphorylated spliceosomal proteins, at multiple time points during salt stress and a number of kinase substrate motifs. GreenPhos is expected to serve as a universal method for purification of plant phosphopeptides, which, if samples are further fractionated and analyzed by multiple LC-MS runs, could enable measurement of plant phosphoproteomes with an unprecedented depth using a given mass spectrometry technology.


Assuntos
Arabidopsis , Animais , Arabidopsis/metabolismo , Fosfopeptídeos/análise , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Fosforilação , Fosfoproteínas/metabolismo
19.
ACS Omega ; 7(51): 47806-47811, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591174

RESUMO

Liquid chromatography-mass spectrometry (LC-MS) is a major tool for the large-scale qualitative and/or quantitative analysis of protein phosphorylation in cells or tissues. The performance of LC is pivotal for the success of phosphoproteomics in both sensitivity and reproducibility. Here, we report that the widely used Easy-nLC 1200 has poor performance in analyzing phosphopeptides, particularly in terms of sensitivity and reproducibility, whereas its predecessor, Easy-nLC 1000, has a much better performance. Therefore, we suggest that Easy-nLC 1200 is not appropriate for LC-MS-based proteomics analysis for samples with a limited amount, particularly phosphopeptides from plants.

20.
J Genet Genomics ; 49(2): 96-108, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775074

RESUMO

Cyanobacteria are a group of oxygenic photosynthetic bacteria with great potentials in biotechnological applications and advantages as models for photosynthesis research. The subcellular localizations of the majority of proteins in any cyanobacteria remain undetermined, representing a major challenge in using cyanobacteria for both basic and industrial researches. Here, using label-free quantitative proteomics, we map 2027 proteins of Synechocystis sp. PCC6803, a model cyanobacterium, to different subcellular compartments and generate a proteome atlas with such information. The atlas leads to numerous unexpected but important findings, including the predominant localization of the histidine kinases Hik33 and Hik27 on the thylakoid but not the plasma membrane. Such information completely changes the concept regarding how the two kinases are activated. Together, the atlas provides subcellular localization information for nearly 60% proteome of a model cyanobacterium, and will serve as an important resource for the cyanobacterial research community.


Assuntos
Proteoma , Synechocystis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA