Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Cell Mol Med ; 28(12): e18449, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924214

RESUMO

Mitochondrial dynamics has emerged as an important target for neuronal protection after cerebral ischaemia/reperfusion. Therefore, the aim of this study was to investigate the mechanism by which ARMC10 regulation of mitochondrial dynamics affects mitochondrial function involved in ischaemic stroke (IS). Mitochondrial morphology was detected by laser scanning confocal microscopy (LSCM), and mitochondrial ultrastructural alterations were detected by electron microscopy. The expression of mitochondrial dynamics-related genes Drp1, Mfn1, Mfn2, Fis1, OPA1 and ARMC10 and downstream target genes c-Myc, CyclinD1 and AXIN2 was detected by RT-qPCR. Western blot was used to detect the protein expression of ß-catenin, GSK-3ß, p-GSK-3ß, Bcl-2 and Bax. DCFH-DA fluorescent probe was to detect the effect of ARMC10 on mitochondrial ROS level, Annexin V-FITC fluorescent probe was to detect the effect of ARMC10 on apoptosis, and ATP assay kit was to detect the effect of ARMC10 on ATP production. Mitochondrial dynamics was dysregulated in clinical IS samples and in the OGD/R cell model, and the relative expression of ARMC10 gene was significantly decreased in IS group (p < 0.05). Knockdown and overexpression of ARMC10 could affect mitochondrial dynamics, mitochondrial function and neuronal apoptosis. Agonist and inhibitor affected mitochondrial function and neuronal apoptosis by targeting Wnt/ß-Catenin signal pathway. In the OGD/R model, ARMC10 affected mitochondrial function and neuronal apoptosis through the mechanism that regulates Wnt/ß-catenin signalling pathway. ARMC10 regulates mitochondrial dynamics and protects mitochondrial function by activating Wnt/ß-catenin signalling pathway, to exert neuroprotective effects.


Assuntos
Apoptose , Proteínas do Domínio Armadillo , AVC Isquêmico , Mitocôndrias , Dinâmica Mitocondrial , Via de Sinalização Wnt , Humanos , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/genética , beta Catenina/metabolismo , beta Catenina/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/patologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Sensors (Basel) ; 24(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39065861

RESUMO

The performance-degradation pattern of the planetary roller screw mechanism (PRSM) is difficult to predict and evaluate due to a variety of factors. Load-carrying capacity, transmission accuracy, and efficiency are the main indicators for evaluating the performance of the PRSM. In this paper, a testing device for the comprehensive performance of the PRSM is designed by taking into account the coupling relationships among temperature rise, vibration, speed, and load. First, the functional design and error calibration of the testing device were conducted. Secondly, the PRSM designed in the supported project was taken as the research object to conduct degradation tests on its load-bearing capacity and transmission accuracy and analyze the changes in transmission efficiency. Third, the thread profile and wear condition were scanned and inspected using a universal tool microscope and an optical microscope. Finally, based on the monitoring module of the testing device, the vibration status during the PRSM testing process was collected in real time, laying a foundation for the subsequent assessment of the changes in the performance state of the PRSM. The test results reveal the law of performance degradation of the PRSM under the coupled effects of temperature, vibration, speed, and load.

3.
Environ Res ; 223: 115470, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775088

RESUMO

Even in the vertical dimension, soil bacterial communities are spatially distributed in a distance-decay relationship (DDR). However, whether this pattern is universal among all soil microbial taxonomic groups, and how body size influences this distribution, remains elusive. Our study consisted of obtaining 140 soil samples from two adjacent ecosystems in the Yellow River Delta (YRD), both nontidal and tidal, and measuring the DDR between topsoil and subsoil for bacteria, archaea, fungi and protists (rhizaria). Our results showed that the entire community generally fitted the DDR patterns (P < 0.001), this was also true at the kingdom level (P < 0.001, with the exception of the fungal community), and for most individual phyla (47/75) in both ecosystems and with soil depth. Meanwhile, these results presented a general trend that the community turnover rate of nontidal soils was higher than tidal soils (P < 0.05), and that the rate of topsoil was also higher than that of subsoil (P < 0.05). Additionally, microbial spatial turnover rates displayed a negative relationship with body sizes in nontidal topsoil (R2 = 0.29, P = 0.009), suggesting that the smaller the body size of microorganisms, the stronger the spatial limitation was in this environment. However, in tidal soils, the body size effect was negligible, probably owing to the water's fluidity. Moreover, community assembly was judged to be deterministic, and heterogeneous selection played a dominant role in the different environments. Specifically, the spatial distance was much more influential, while the soil salinity in these ecosystems was the major environmental factor in selecting the distributions of microbial communities. Overall, this study revealed that microbial community compositions at different taxonomic levels followed relatively consistent distribution patterns and mechanisms in this coastal area.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Solo , Microbiologia do Solo
4.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177579

RESUMO

The automotive Ethernet is gradually replacing the traditional controller area network (CAN) as the backbone network of the vehicle. As an essential protocol to solve service-based communication, Scalable service-Oriented MiddlewarE over IP (SOME/IP) is expected to be applied to an in-vehicle network (IVN). The increasing number of external attack interfaces and the protocol's vulnerability makes SOME/IP in-vehicle networks vulnerable to intrusion. This paper proposes a multi-layer intrusion detection system (IDS) architecture, including rule-based and artificial intelligence (AI)-based modules. The rule-based module is used to detect the SOME/IP header, SOME/IP-SD message, message interval, and communication process. The AI-based module acts on the payload. We propose a SOME/IP dataset establishment method to evaluate the performance of the proposed multi-layer IDS. Experiments are carried out on a Jetson Xavier NX, showing that the accuracy of AI-based detection reached 99.7761% and that of rule-based detection was 100%. The average detection time per packet is 0.3958 ms with graphics processing unit (GPU) acceleration and 0.6669 ms with only a central processing unit (CPU). After vehicle-level real-time analyses, the proposed IDS can be deployed for distributed or select critical advanced driving assistance system (ADAS) traffic for detection in a centralized layout.

5.
J Cell Mol Med ; 26(15): 4157-4168, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35791521

RESUMO

The mtDNA copy number can affect the function of mitochondria and play an important role in the development of diseases. However, there are few studies on the mechanism of mtDNA copy number variation and its effects in IS. The specific mechanism of mtDNA copy number variation is still unclear. In this study, mtDNA copy number of 101 IS patients and 101 normal controls were detected by qRT-PCR, the effect of D-loop variation on mtDNA copy number of IS patients was explored. Then, a TFAM gene KD-OE PC12 cell model was constructed to explore the effect of mtDNA copy number variation on mitochondrial function. The results showed that the mtDNA copy number level of the IS group was significantly lower than that of the normal control group (p < 0.05). The relative expression of TFAM gene mRNA in the cells of the OGD/R treatment group was significantly lower than that of the control group (p < 0.05). In addition, after TFAM gene knockdown and over-expression plasmids were transfected into HEK 293T cells, mtDNA copy number and ATP production level of Sh-TFAM transfection group was significantly decreased (p < 0.05), while mtDNA copy number and ATP production level of OE-TFAM transfected group were significantly higher than that of blank control group and OE-ctrl negative control group (p < 0.01). Our study demonstrated that mitochondrial D-loop mutation and TFAM gene dysfunction can cause the decrease of mtDNA copy number, thus affecting the mitochondrial metabolism and function of nerve cells, participating in the pathological damage mechanism of IS.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Trifosfato de Adenosina/metabolismo , Isquemia Encefálica/metabolismo , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dosagem de Genes , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Acidente Vascular Cerebral/metabolismo , Fatores de Transcrição/metabolismo
6.
Environ Res ; 212(Pt B): 113298, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35430281

RESUMO

Fungi could play an important role during anaerobic digestion (AD), but have received less attention than prokaryotes. Here, AD bioreactors of food waste were performed to explore fungal succession and their potential ecological and engineering value. We found that similar patterns in fungal biomass and diversity, decreasing from the initial time point (Day 0) to the lowest value within 3-6 days and then started to rise and stabilized between 9 and 42 days. Throughout the entire AD process, variations in fungal community composition were observed and dominant fungal taxa have the potential ability to degrade complex organic matter and alleviate fatty acid and ammonia accumulation. Furthermore, we found that deterministic processes gradually dominated fungal assembly succession (up to 84.85% at the final stage), suggesting changing environmental status responsible for fungal community dynamics and specifically, fungal community structure, diversity and biomass were regulated by different environmental variables or the same variables with opposite effects. AD bioreactors could directionally select specific fungal taxa over time, but some highly abundant fungi could not be mapped to any fungal species with defined function in the reference database, so function prediction relying on PICRUSt2 may underestimate fungal function in AD systems. Collectively, our study confirmed fungi have important ecological and engineering values in AD systems.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos/microbiologia , Metano
7.
Glob Chang Biol ; 27(24): 6331-6347, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34544207

RESUMO

Global warming may alter microbially mediated ecosystem functions through reshaping of microbial diversity and modified microbial interactions. Here, we examined the effects of 5-year experimental warming on different microbial hierarchical groups in a coastal nontidal soil ecosystem, including prokaryotes (i.e., bacteria and archaea), fungi, and Cercozoa, which is a widespread phylum of protists. Warming significantly altered the diversity and structure of prokaryotic and fungal communities in soil and additionally decreased the complexity of the prokaryotic network and fragmented the cercozoan network. By using the Inter-Domain Ecological Network approach, the cross-trophic interactions among prokaryotes, fungi, and Cercozoa were further investigated. Under warming, cercozoan-prokaryotic and fungal-prokaryotic bipartite networks were simplified, whereas the cercozoan-fungal network became slightly more complex. Despite simplification of the fungal-prokaryotic network, the strengthened synergistic interactions between saprotrophic fungi and certain prokaryotic groups, such as the Bacteroidetes, retained these phyla within the network under warming. In addition, the interactions within the fungal community were quite stable under warming conditions, which stabilized the interactions between fungi and prokaryotes or protists. Additionally, we found the microbial hierarchical interactions were affected by environmental stress (i.e., salinity and pH) and soil nutrients. Interestingly, the relevant microbial groups could respond to different soil properties under ambient conditions, whereas under warming these two groups tended to respond to similar soil properties, suggesting network hub species responded to certain environmental changes related to warming, and then transferred this response to their partners through trophic interactions. Finally, warming strengthened the network modules' negative association with soil organic matters through some fungal hub species, which might trigger soil carbon loss in this ecosystem. Our study provides new insights into the response and feedback of microbial hierarchical interactions under warming scenario.


Assuntos
Ecossistema , Microbiologia do Solo , Archaea , Fungos , Interações Microbianas , Solo
8.
Mol Ecol ; 29(10): 1890-1902, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32299139

RESUMO

Biodiversity is the foundation of all ecosystems across the planet, and having a better understanding of its global distribution mechanism could be important for biodiversity conservation under global change. A niche width model, combined with metabolic theory, has successfully predicted the increase of α-diversity and decrease of ß-diversity in the below-ground microbial community along an altitudinal mountain gradient. In this study, we evaluated this niche width model of above-ground plants (mainly trees and shrubs) and below-ground bulk soil microbial communities (i.e., bacteria and archaea) along a latitudinal gradient of forests in China. The niche widths of both plants and microbes increased with increasing temperature and precipitation, and with proximity to circumneutral pH. However, the α- and ß-diversities (observed richness and Bray-Curtis dissimilarity, respectively) could not be accurately predicted by a single niche width model alone, either temperature, precipitation or pH. Considering the interactions among different niche width models, all three niche width models were combined to predict biodiversity at the community level using structural equation modelling. The results showed that the niche width model of circumneutral pH was most important in predicting diversity profiling (i.e., α- and ß-diversity) for both plants and microbes, while niche width of precipitation and temperature showed both direct and indirect importance for microbe and plant biodiversity, respectively. Because the current niche width model neglects several scenarios related to taxon and environmental attributes, it still needs to be treated with caution in predicting biodiversity trends.


Assuntos
Biodiversidade , Ecossistema , Microbiologia do Solo , China , Florestas , Plantas , Solo
9.
Environ Res ; 184: 109392, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32209499

RESUMO

The accelerated development and application of graphene-family nanomaterials (GFNs) have increased their release to various environments and converged in wastewater treatment plants (WWTPs). However, little is known about the interactions between GFNs and microbes in WWTPs. In this study, the interaction of graphene oxide (GO) or graphene (G) at different concentrations with microbial communities in sequential batch reactors was investigated. Transmission electron microscopy and Raman spectroscopy analyses showed that the structures of GFNs were obviously changed, which suggested GFNs could be degraded by some microbes. Significantly higher DNA concentration and lower cell number in high-concentration GO group were detected by DNA leakage test and qPCR analysis, which confirmed the microbial toxicity of GO. The chemical oxygen demand and ammonia nitrogen removals were significantly affected by G and GO with high concentrations. Further, high-throughput sequencing confirmed the composition and dynamic changes of microbial communities under GFNs exposure. Saccharibacteria genera incertae sedis (12.55-28.05%) and Nakamurella (20.45-29.30%) were the predominant genera at two stages, respectively. FAPROTAX suggested 12 functional groups with obvious changes related to the biogeochemical cycle of C, N and S. Molecular ecological network analysis showed that the networks were more complex in the presence of GFNs, and the increased negative interactions reflected more competition relationships in microbial communities. This study is the first to report the effect of GFNs on network of microbial communities, which provides in-depth insights into the complex and highlights concerns regarding the risk of GFNs to WWTPs.


Assuntos
Grafite , Microbiota , Nanoestruturas , Análise da Demanda Biológica de Oxigênio , Grafite/toxicidade , Nanoestruturas/toxicidade , Águas Residuárias
10.
Environ Res ; 183: 109145, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035407

RESUMO

To investigate the influence of antibiotics on microbial interactions in a biofilm community, we set up eight replicate reactors of microbial electrolysis cell (MEC) and applied a broad-spectrum antibiotic florfenical (FLO) as an environmental disturbance. According to the results, exposure to FLO resulted in degradation of reactor performance. The MEC could also rebound back to the comparably stable state at a certain time which exhibited a great resilience ability in response to antibiotic disturbance. The FLO perturbation showed a significant influence on the electroactive biofilms (EABs) with a distinct reformation of the community structure. Network analysis revealed that microbial interactions in the biofilms after full recovery became much closer, with a rapid increase in the positive interactions between the predominant genus Geobacter and other microorganisms as compared to the stage before FLO disturbance. Moreover, the keystone species in the networks after full recovery possessed more connections between Geobacter and potential synergistic species. Our results demonstrated that FLO, with broad-spectrum antibacterial ability, could restructure the EABs with more positive interactions for hydrogen production. This study demonstrated the response mechanisms of the MECs to the antibiotic disturbance, providing a scientific reference for the rapid development of this biotechnology to treat wastewater containing antibiotics.


Assuntos
Interações Microbianas , Tianfenicol/análogos & derivados , Águas Residuárias , Eletrólise , Hidrogênio , Tianfenicol/farmacologia
11.
Ann Vasc Surg ; 68: 460-467, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32339682

RESUMO

BACKGROUND: Adenosine triphosphate-binding cassette subfamily G member 1 (ABCG1) has the function of transporting free intracellular cholesterol to extracellular high-density lipoprotein (HDL) particles, which play a crucial role in atherosclerosis. The goal of this study is to examine the relationship between the polymorphisms of the ABCG1 gene promoter region and ischemic stroke. METHODS: In the present study, a case-control association study was designed to identify 3 single-nucleotide polymorphisms (SNPs; rs5713919, rs1378577, and rs1893590), which were located in the promoter region of ABCG1 gene by kompetitive allele-specific polymerase chain reaction genotyping approach. The in vitro luciferase assay was done to estimate the effect of rs5713919 on gene expression. Finally, the relationships of 3 SNPs of ABCG1 gene with plasma lipids and lipoproteins were investigated in this Chinese cohort. RESULTS: The correlation analysis between lipids and genotypes showed that the rs57137919 locus genotype was significantly associated with HDL cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels (P = 0.021 and P = 0.017, respectively), and the GA and AA genotypes had higher HDL-C levels than the GG genotype. CONCLUSIONS: Our study provides evidence that ABCG1 promoter region polymorphism rs57137919 has an influence on plasma HDL-C and LDL-C levels in Chinese Han population.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Isquemia Encefálica/genética , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Acidente Vascular Cerebral/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Idoso , Povo Asiático/genética , Biomarcadores/sangue , Isquemia Encefálica/sangue , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/etnologia , Estudos de Casos e Controles , China , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Fatores de Risco , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/etnologia
12.
Ophthalmic Physiol Opt ; 40(3): 289-299, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031697

RESUMO

PURPOSE: A previous study reported a novel c.544_618del75bp mutation in exon 7 of the PRPF31 gene in a Chinese family with autosomal dominant retinal pigmentosa (ADRP). However, the selected pedigree was a small part of the whole family and the function of the c.544_618del75bp mutation was not explored deeply. The aim of the present study was to validate the previous results and explore the functional significance of the c.544_618del75bp mutation. METHODS: We extended the size of the ADRP pedigree and sequenced DNA and cDNA of the PRPF31 gene for all members of the family and 100 healthy controls. Real-time quantitative polymerase chain reaction (PCR) analysis was performed on the cDNA of patients in the family and cell culture, plasmids transfection and western blot analysis were done to evaluate the functional effect of the mutation in vitro. RESULTS: Sanger sequencing showed that the mutation was present in all patients and absent in all normal individuals, except for participant III-9. Bioinformatics analysis revealed that the c.544_618del75bp mutation caused a 25 amino acid deletion in the PRPF31 protein. In addition, the mRNA expression assay revealed that the mRNA expression level of the PRPF31 and RP9 genes were significantly lower in RP patients than controls (p < 0.05). Finally, the in vitro transfection assay demonstrated that the mRNA expression level of the mutant transfection group was significantly lower than the wild-type transfection group (p < 0.05). CONCLUSIONS: Our study suggested that the c.544_618del75bp mutation in the PRPF31 gene was a causative mutation in this ADRP family and affected the expression of RP9 gene by influencing the formation of U4/U6-U5 tri-snRNP, eventually leading to the occurrence of RP.


Assuntos
DNA/genética , Proteínas do Olho/genética , Mutação , RNA Mensageiro/genética , Retinose Pigmentar/genética , Adulto , Análise Mutacional de DNA , Proteínas do Olho/metabolismo , Feminino , Humanos , Masculino , Linhagem , Splicing de RNA , RNA Mensageiro/biossíntese , Retinose Pigmentar/metabolismo
13.
J Integr Neurosci ; 19(3): 429-436, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33070521

RESUMO

MicroRNAs are reportedly involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease and multiple system atrophy. We previously identified 7 differentially expressed microRNAs in Parkinson's disease patients and control sera (miR-30c, miR-31, miR-141, miR-146b-5p, miR-181c, miR-214, and miR-193a-3p). To investigate the expression levels of the 7 serum microRNAs in Parkinson's disease and multiple system atrophy, 23 early Parkinson's disease patients (who did not take any anti- Parkinson's disease drugs), 23 multiple system atrophy patients, and 24 normal controls were recruited at outpatient visits in this study. The expression levels of the 7 microRNAs in serum were detected using quantitative real-time polymerase chain reaction. A receiver operating characteristic curve was used to evaluate whether microRNAs can differentially diagnose Parkinson's disease and multiple system atrophy. Clinical scales were used to analyze the correlations between serum microRNAs and clinical features. The results indicated that miR-214 could distinguish Parkinson's disease from the controls, and another 3 microRNAs could differentiate multiple system atrophy from the controls (miR-141, miR-193a-3p, and miR-30c). The expression of miR-31, miR-141, miR-181c, miR-193a-3p, and miR-214 were lower in multiple system atrophy than in Parkinson's disease (all P < 0.05). Combinations of microRNAs accurately discriminated Parkinson's disease from multiple system atrophy (area under the receiver operating characteristic curve = 0.951). For the correlation analysis, negative correlations were discovered between the expression of miR-214 and the Hamilton Anxiety Scale and Parkinson's Disease Non-Motor Symptom scores (all P < 0.05). Our results demonstrate that the distinctive characteristics of microRNAs differentiate Parkinson's disease and multiple system atrophy patients from healthy controls and may be used for the early diagnosis of Parkinson's disease and multiple system atrophy.


Assuntos
MicroRNAs/sangue , Atrofia de Múltiplos Sistemas/diagnóstico , Doença de Parkinson/diagnóstico , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/sangue , Doença de Parkinson/sangue , Sensibilidade e Especificidade
14.
Environ Sci Technol ; 53(3): 1315-1324, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30615833

RESUMO

Community assembly process (determinism vs stochasticity) determines the composition and diversity of a microbial community, and then shapes its functions. Understanding this complex process and its relationship to the community functions becomes a very important task for the applications of microbial biotechnology. In this study, we applied microbial electrolysis cells (MECs) with moderate species numbers and easily tractable functions as a model ecosystem, and constructed a series of biofilm communities with gradient biodiversity to examine the roles of community assembly in determining microbial community structure and functions. After stable biofilms formed, the best MEC reactor performances (e.g., gas productivity, total energy efficiency) were achieved in the group in which biofilms had the second highest α-diversity, and biofilms with even lower diversity showed declining performance. Null model analyses indicated that both deterministic and stochastic assembly played roles in the formation of biofilm communities. When deterministic assembly dominates this formation, the higher diversity of the biofilm community would generally show better reactor performance. However, when the stochasticity dominates the assembly process, the bioreactor performance would decline. This study provides novel evidence that the assembly mechanism could be one of the key processes to shift the functions, and proposes an important guidance for selecting the most efficient microorganisms for environmental biotechnologies.


Assuntos
Reatores Biológicos , Ecossistema , Biodiversidade , Biofilmes
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(10): 1015-1018, 2019 Oct 10.
Artigo em Zh | MEDLINE | ID: mdl-31598949

RESUMO

OBJECTIVE: To carry out genetic testing and prenatal diagnosis for a family affected with Duchenne muscular dystrophy (DMD). METHODS: Multiplex ligation dependent probe amplification (MLPA) was used to detect potential deletion and duplication of the Dystrophin gene. Haplotype analysis was performed using five short tandem repeat polymorphism loci (3'-STR, 5'-STR, 45-STR, 49-STR, 50-STR of the DMD gene. RESULTS: A same deletional mutation (exons 51-55) of the DMD gene was detected in two brothers but not in their mother. The patients and fetus have inherited different haplotypes of the Dystrophin gene from their mother, suggesting that the fetus was unaffected. CONCLUSION: The mother was very likely to harbor germline mosaicism for the Dystrophin gene variant. Genetic testing of peripheral blood samples cannot rule out germline mosaicism in the mother. Prenatal diagnosis should be provided for subsequent pregnancies in this family.


Assuntos
Distrofina/genética , Deleção de Genes , Mutação em Linhagem Germinativa , Mosaicismo , Distrofia Muscular de Duchenne/genética , Éxons , Feminino , Humanos , Masculino , Gravidez , Diagnóstico Pré-Natal
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(8): 785-788, 2019 Aug 10.
Artigo em Zh | MEDLINE | ID: mdl-31400128

RESUMO

OBJECTIVE: To carry out genetic diagnosis for a pedigree affected with cutis laxa. METHODS: Genomic DNA was extracted from peripheral blood samples from members of the pedigree and 50 unrelated healthy controls. Potential mutation was screened by next-generation sequencing and verified by Sanger sequencing. RESULTS: A heterozygous c.1985delG mutation was identified in the ELN gene among all patients from this pedigree. The same mutation was not found among unaffected family members and 50 healthy controls. CONCLUSION: The genetic etiology for the pedigree has been elucidated, which has enabled genetic counseling and guidance for reproduction.


Assuntos
Cútis Laxa/genética , Elastina/genética , Mutação , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linhagem
17.
Bioprocess Biosyst Eng ; 41(3): 359-367, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29188359

RESUMO

A green and eco-friendly method for the synthesis of gold nanoparticles (AuNPs) was developed using the cell-free extracts of a yeast strain Magnusiomyces ingens LH-F1. UV-vis spectra showed a distinct absorption band at ~ 540 nm, corresponding to the surface plasmon resonance of AuNPs. Transmission electron microscopy images revealed that the shapes of AuNPs were almost spherical and pseudo-spherical. Fourier transform infrared spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses suggested that some proteins containing amino- and carboxyl-groups in the cell-free extracts were absorbed on the surface of nanoparticles, which could act as reducing and capping agents for AuNPs synthesis. Furthermore, with the concentration of cell-free extracts increasing from 25 to 200 mg L-1, the average size of AuNPs decreased from 28.3 to 20.3 nm. Meanwhile, the morphology became more uniform with less irregular shapes. In addition, the as-synthesized AuNPs showed an excellent catalytic activity for nitrophenols reduction (i.e., 4-nitrophenol, 3-nitrophenol and 2-nitrophenol) in the presence of excess NaBH4. The catalytic rate constant of nitrophenols reduction was also dependent on cell-free extract concentration. The larger AuNPs synthesized by less cell-free extracts were covered with a thinner corona and showed better capacity for reducing nitrophenols. This study suggested that the as-synthesized AuNPs could be employed as efficient catalysts in reduction of organic contaminants.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nitrofenóis/química , Saccharomycetales/química , Sistema Livre de Células/química , Oxirredução
18.
Mol Ecol ; 26(21): 6170-6182, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28926148

RESUMO

The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called microbial electrolysis cells (MEC) contain moderate species numbers and easy tractable functional traits, thus providing an ideal platform for verifying ecological theories in microbial ecosystems. Here, we investigated the resilience of biofilm communities with a gradient of diversity, and explored the relationship between biodiversity and stability in response to a pH shock. The results showed that all bioreactors could recover to stable performance after pH disturbance, exhibiting a great resilience ability. A further analysis of microbial composition showed that the rebound of Geobacter and other exoelectrogens contributed to the resilient effectiveness, and that the presence of Methanobrevibacter might delay the functional recovery of biofilms. The microbial communities with higher diversity tended to be recovered faster, implying biofilms with high biodiversity showed better resilience in response to environmental disturbance. Network analysis revealed that the negative interactions between the two dominant genera of Geobacter and Methanobrevibacter increased when the recovery time became longer, implying the internal resource or spatial competition of key functional taxa might fundamentally impact the resilience performances of biofilm communities. This study provides new insights into our understanding of the relationship between diversity and ecosystem functioning.


Assuntos
Bactérias/classificação , Biodiversidade , Biofilmes , Fontes de Energia Bioelétrica , Reatores Biológicos/microbiologia , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética
19.
Biotechnol Lett ; 38(9): 1503-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27160995

RESUMO

OBJECTIVE: To investigate green synthesis of gold nanoparticles (AuNPs) by Trichosporon montevideense, and to study their reduction of nitroaromatics. RESULTS: AuNPs had a characteristic absorption maximum at 535 nm. Scanning electron microscopy images revealed that the biosynthesized nanoparticles were attached on the cell surface. X-ray diffraction analysis indicated that the particles formed as face-centered cubic (111)-oriented crystals. The average size of AuNPs decreased from 53 to 12 nm with increasing biomass concentration. The catalytic reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, o-nitrophenylamine and m-nitrophenylamine (0.1 mM) by NaBH4 had reaction rate constants of 0.32, 0.44, 0.09, 0.24 and 0.39 min(-1) with addition of 1.45 × 10(-2) mM AuNPs. CONCLUSIONS: An eco-friendly approach for synthesis of AuNPs by T. montevideense is reported for the first time. The biogenic AuNPs could serve as efficient catalysts for hydrogenation of various nitroaromatics.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Trichosporon/metabolismo , Catálise , Química Verde/métodos , Hidrogenação , Nitrofenóis/química
20.
Water Sci Technol ; 71(8): 1235-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909735

RESUMO

The ecological effects of carbon nanotubes (CNTs) have been a worldwide research focus due to their extensive release and accumulation in environment. Activated sludge acting as an important gathering place will inevitably encounter and interact with CNTs, while the microbial responses have been rarely investigated. Herein, the activated sludges from six wastewater treatment plants were acclimated and treated with single-walled carbon nanotubes (SWCNTs) under identical conditions. Illumina high-throughput sequencing was applied to in-depth analyze microbial changes and results showed SWCNTs differently perturbed the alpha diversity of the six groups (one increase, two decrease, three no change). Furthermore, the microbial community structures were shifted, and specific bacterial performance in each group was different. Since the environmental and operational factors were identical in each group, it could be concluded that microbial responses to SWCNTs were highly depended on the original community structures.


Assuntos
Bactérias/classificação , Nanotubos de Carbono/química , Esgotos/microbiologia , Águas Residuárias , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA