Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2302226120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399403

RESUMO

Plant intracellular nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs) activate a robust immune response upon detection of pathogen effectors. How NLRs induce downstream immune defense genes remains poorly understood. The Mediator complex plays a central role in transducing signals from gene-specific transcription factors to the transcription machinery for gene transcription/activation. In this study, we demonstrate that MED10b and MED7 of the Mediator complex mediate jasmonate-dependent transcription repression, and coiled-coil NLRs (CNLs) in Solanaceae modulate MED10b/MED7 to activate immunity. Using the tomato CNL Sw-5b, which confers resistance to tospovirus, as a model, we found that the CC domain of Sw-5b directly interacts with MED10b. Knockout/down of MED10b and other subunits including MED7 of the middle module of Mediator activates plant defense against tospovirus. MED10b was found to directly interact with MED7, and MED7 directly interacts with JAZ proteins, which function as transcriptional repressors of jasmonic acid (JA) signaling. MED10b-MED7-JAZ together can strongly repress the expression of JA-responsive genes. The activated Sw-5b CC interferes with the interaction between MED10b and MED7, leading to the activation of JA-dependent defense signaling against tospovirus. Furthermore, we found that CC domains of various other CNLs including helper NLR NRCs from Solanaceae modulate MED10b/MED7 to activate defense against different pathogens. Together, our findings reveal that MED10b/MED7 serve as a previously unknown repressor of jasmonate-dependent transcription repression and are modulated by diverse CNLs in Solanaceae to activate the JA-specific defense pathways.


Assuntos
Proteínas de Arabidopsis , Imunidade Vegetal , Imunidade Vegetal/genética , Ciclopentanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
PLoS Pathog ; 19(1): e1011134, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706154

RESUMO

Autophagy plays an important role in virus infection of the host, because viral components and particles can be degraded by the host's autophagy and some viruses may be able to hijack and subvert autophagy for its benefit. However, details on the mechanisms that govern autophagy for immunity against viral infections or benefit viral survival remain largely unknown. Plant reoviruses such as southern rice black-streaked dwarf virus (SRBSDV), which seriously threaten crop yield, are only transmitted by vector insects. Here, we report a novel mechanism by which SRBSDV induces incomplete autophagy by blocking autophagosome-lysosome fusion, resulting in viral accumulation in gut epithelial cells of its vector, white-backed planthopper (Sogatella furcifera). SRBSDV infection leads to stimulation of the c-Jun N-terminal kinase (JNK) signaling pathway, which further activates autophagy. Mature and assembling virions were found close to the edge7 of the outer membrane of autophagosomes. Inhibition autophagy leads to the decrease of autophagosomes, which resulting in impaired maturation of virions and the decrease of virus titer, whereas activation of autophagy facilitated virus titer. Further, SRBSDV inhibited fusion of autophagosomes and lysosomes by interacting with lysosomal-associated membrane protein 1 (LAMP1) using viral P10. Thus, SRBSDV not only avoids being degrading by lysosomes, but also further hijacks these non-fusing autophagosomes for its subsistence. Our findings reveal a novel mechanism of reovirus persistence, which can explain why SRBSDV can be acquired and transmitted rapidly by its insect vector.


Assuntos
Hemípteros , Orthoreovirus , Oryza , Reoviridae , Animais , Doenças das Plantas , Reoviridae/metabolismo , Autofagia
3.
PLoS Pathog ; 19(3): e1011238, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961862

RESUMO

A major threat to rice production is the disease epidemics caused by insect-borne viruses that emerge and re-emerge with undefined origins. It is well known that some human viruses have zoonotic origins from wild animals. However, it remains unknown whether native plants host uncharacterized endemic viruses with spillover potential to rice (Oryza sativa) as emerging pathogens. Here, we discovered rice tiller inhibition virus (RTIV), a novel RNA virus species, from colonies of Asian wild rice (O. rufipogon) in a genetic reserve by metagenomic sequencing. We identified the specific aphid vector that is able to transmit RTIV and found that RTIV would cause low-tillering disease in rice cultivar after transmission. We further demonstrated that an infectious molecular clone of RTIV initiated systemic infection and causes low-tillering disease in an elite rice variety after Agrobacterium-mediated inoculation or stable plant transformation, and RTIV can also be transmitted from transgenic rice plant through its aphid vector to cause disease. Finally, global transcriptome analysis indicated that RTIV may disturb defense and tillering pathway to cause low tillering disease in rice cultivar. Thus, our results show that new rice viral pathogens can emerge from native habitats, and RTIV, a rare aphid-transmitted rice viral pathogen from native wild rice, can threaten the production of rice cultivar after spillover.


Assuntos
Afídeos , Oryza , Vírus , Animais , Humanos , Oryza/genética , Afídeos/genética , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/genética , Vírus/genética , Doenças das Plantas
4.
Plant J ; 115(1): 155-174, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37025008

RESUMO

Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Clatrina/metabolismo , Proteínas de Arabidopsis/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Ácido Salicílico/metabolismo , Raízes de Plantas/metabolismo , Transporte Proteico , Ácidos Indolacéticos/metabolismo
5.
J Virol ; 97(4): e0180922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022194

RESUMO

Orthotospoviruses, the plant-infecting bunyaviruses, cause serious diseases in agronomic crops and pose major threats to global food security. The family of Tospoviridae contains more than 30 members that are classified into two geographic groups, American-type and Euro/Asian-type orthotospovirus. However, the genetic interaction between different species and the possibility, during mixed infections, for transcomplementation of gene functions by orthotospoviruses from different geographic groups remains underexplored. In this study, minireplicon-based reverse genetics (RG) systems have been established for Impatiens necrotic spot virus (INSV) (an American-type orthotospovirus) and for Calla lily chlorotic spot virus and Tomato zonate spot virus (CCSV and TZSV) (two representative Euro/Asian orthotospoviruses). Together with the earlier established RG system for Tomato spotted wilt virus (TSWV), a type species of the Orthotospovirus American-clade, viral replicase/movement proteins were exchanged and analyzed on interspecies transcomplementation. Whereas the homologous RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) protein supported the replication of orthotospoviruses from both geographic groups, heterologous combinations of RdRp from one group and N from the other group were unable to support the replication of viruses from both groups. Furthermore, the NSm movement protein (MP), from both geographic groups of orthotospoviruses, was able to transcomplement heterologous orthotospoviruses or a positive-strand Cucumber mosaic virus (CMV) in their movement, albeit with varying efficiency. MP from Rice stripe tenuivirus (RSV), a plant-infecting bunyavirus that is distinct from orthotospoviruses, or MP from CMV also moves orthotospoviruses. Our findings gain insights into the genetic interaction/reassortant potentials for the segmented plant orthotospoviruses. IMPORTANCE Orthotospoviruses are agriculturally important negative-strand RNA viruses and cause severe yield-losses on many crops worldwide. Whereas the emergence of new animal-infecting bunyaviruses is frequently associated with genetic reassortants, this issue remains underexposed with the plant-infecting orthotospovirus. With the development of reverse genetics systems for orthotospoviruses from different geographic regions, the interspecies/intergroup replication/movement complementation between American- and Euro/Asian-type orthotospoviruses were investigated. Genomic RNAs from American orthotospoviruses can be replicated by the RdRp and N from those of Euro/Asia-group orthotospoviruses, and vice versa. However, their genomic RNAs cannot be replicated by a heterologous combination of RdRp from one geographic group and N from another geographic group. Cell-to-cell movement of viral entity is supported by NSm from both geographic groups, with highest efficiency by NSm from viruses belonging to the same group. Our findings provide important insights into the genetic interaction and exchange ability of viral gene functions between different species of orthotospovirus.


Assuntos
Genética Reversa , Tospovirus , Replicação Viral , Animais , Genética Reversa/métodos , RNA Polimerase Dependente de RNA , Tospovirus/genética , Estados Unidos , Replicação Viral/genética , RNA Viral/genética , Proteínas do Nucleocapsídeo/genética
6.
Arch Virol ; 169(2): 39, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300368

RESUMO

The complete genome sequence of a putative novel potyvirus, tentatively named "polygonatum kingianum mottle virus" (PKgMV; GenBank accession no. ON428226), infecting Polygonatum kingianum in China, was obtained by next-generation sequencing (NGS), reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE). PKgMV exhibits the typical genome organization and characteristics of members of the genus Potyvirus, with a length of 10,002 nucleotides (nt) and a large open reading frame (nt 108 to 9,746) encoding a polyprotein of 3,212 amino acids (aa) (363.68 kDa). Pairwise comparisons revealed that the PKgMV polyprotein shares 50.5-68.6% nt and 43.1-72.2% aa sequence identity with reported members of the genus Potyvirus. Moreover, phylogenetic analysis indicated that PKgMV is closely related to polygonatum kingianum virus 1 (PKgV1; accession no. MK427056). These results suggest that the PKgMV is a novel member of the genus Potyvirus of the family Potyviridae.


Assuntos
Polygonatum , Potyvirus , China , Filogenia , Aminoácidos , Nucleotídeos , Poliproteínas , Potyvirus/genética
7.
Plant Dis ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803070

RESUMO

Polygonatum kingianum is a Chinese herbal medicine that belongs to the genus Polygonatum of the family Liliaceae. In June 2023, Polygonatum kingianum Coll. et Hemsl. in nurseries in Qujing, Yunnan Province, China, showed irregular brown spots on the leaves, whole leaf necrosis, and plant death in serious cases, with an incidence of 10-20% (Fig. S1). To identify the pathogens of P. kingianum, six diseased samples were collected from nurseries with 0.6 acre. These diseased sample leaves were soaked in 0.1% HgCl2 for 1 min and 75% ethanol for 2 min and then rinsed thrice with sterile water. Treated leaves were cut into small pieces (5×5 mm) and cultured on potato dextrose agar (PDA) for five days at 28°C. Total thirteen fungal strains were isolated from PDA medium. The nuclear ribosomal internal transcribed spacer of ribosomal DNA (ITS rDNA) region of these 13 strains was amplified by polymerase chain reaction (PCR) using universal primers ITSI/ITS4 (White et al. 1990). Sequencing and BLAST of the ITS region on NCBI showed that 11 out of 13 fungal strains belonged to the genus Alternaria, with an identity ≥99%. We selected one of the Alternaria strains, HJ-A1, for further study. The HJ-A1 colony appeared grayish brown white-to-gray with a flocculent texture on the front side and a dark gray underside on the PDA medium (Fig. S1). The conidiophores appeared brown, either single or branched, and produced numerous short conidial chains. The conidia were obclavate to obpyriform or ellipsoid in shape and contained 1-4 transverse septa and 0-2 oblique septa. The conidial diameter was 27.30µm in length and 12.27µm in width. (Fig. S1). To further determine the species of HJA1, the genomic DNA of HJ-A1 was extracted using the Lysis Buffer for PCR (AG, Hunan, China). Four Alternaria genomic DNA regions including the ITS, translation elongation factor 1-α gene (TEF1-α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and Alternaria major allergen gene (Alt a1) were amplified by PCR using the primers as previously reported (Woudenberg et al. 2013, Hong et al. 2005). Sequence analysis revealed that the ITS (484bp) of HJ-A1 (NCBI No. PP082633), TEF1-α (267bp) of HJ-A1 (NCBI No. PP419893), GAPDH (582bp) of HJ-A1 (NCBI No. PP419892), and Alt a1 (522bp) of HJ-A1 (NCBI No. PP228046) shared the highest identity with A. alternata respectively (99≥%). A maximum likelihood phylogenetic tree was constructed with the combined sequence data sets of ITS, GAPDH, TEF, and Alt a1 using MEGA 7. The results showed that HJ-A1 strain clustered with A. alternate (Fig. S2). The pathogenicity of HJ-A1 was tested according to Koch's postulates by inoculating HJ-A1 conidia suspension (2×105 conidia/mL) into leaves of 1-year-old P. kingianum, with sterile water as a control. Each treatment group included 3 plants with 3 replicates. The tested plants were planted in a phytotron at 28℃ and 90% humidity. Three days after inoculation, symptoms similar to those under natural conditions were observed in the HJ-A1-inoculated plants, whereas no symptoms were observed in the control plants (Fig. S1). The same fungal strains were re-isolated from inoculated leaves and identified by morphologically and sequence of ITS. Previous studies showed that Alternaria alternata funji cause many plant diseases, such as fig fruit rot (Latinovic N et al. 2014),daylily leaf spot (Huang D et al. 2022), fruit blight on sesame (Cheng H et al. 2021),leaf spot of Cynanchum atratum Bunge (Sun H et al. 2021) and so on. To our knowledge, this is the first report of A. alternata causing P. kingianum leaf spot in China. The discovery of this pathogen will help to guide the protection and control of P. kingianum disease.

8.
Small ; 19(48): e2304599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544920

RESUMO

Considerable thermal energy is emitted into the environment from human activities and equipment operation in the course of daily production. Accordingly, the use of thermoelectric generators (TEGs) can attract wide interest, and it shows high potential in reducing energy waste and increasing energy recovery rates. Notably, TEGs have aroused rising attention and been significantly boosted over the past few years, as the energy crisis has worsened. The reason for their progress is that thermoelectric generators can be easily attached to the surface of a heat source, converting heat energy directly into electricity in a stable and continuous manner. In this review, applications in wearable devices, and everyday life are reviewed according to the type of structure of TEGs. Meanwhile, the latest progress of TEGs' hybridization with triboelectric nanogenerator (TENG), piezoelectric nanogenerator (PENG), and photovoltaic effect is introduced. Moreover, prospects and suggestions for subsequent research work are proposed. This review suggests that hybridization of energy harvesting, and flexible high-temperature thermoelectric generators are the future trends.

9.
Plant Cell Environ ; 46(2): 650-664, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482792

RESUMO

To study viral infection, the direct structural visualization of the viral life cycle consisting of virus attachment, entry, replication, assembly and transport is essential. Although conventional electron microscopy (EM) has been extremely helpful in the investigation of virus-host cell interactions, three-dimensional (3D) EM not only provides important information at the nanometer resolution, but can also create 3D maps of large volumes, even entire virus-infected cells. Here, we determined the ultrastructural details of tomato spotted wilt virus (TSWV)-infected plant cells using focused ion beam scanning EM (FIB-SEM). The viral morphogenesis and dynamic transformation of paired parallel membranes (PPMs) were analyzed. The endoplasmic reticulum (ER) membrane network consisting of tubules and sheets was related to viral intracellular trafficking and virion storage. Abundant lipid-like bodies, clustering mitochondria, cell membrane tubules, and myelin-like bodies were likely associated with viral infection. Additionally, connecting structures between neighboring cells were found only in infected plant tissues and showed the characteristics of tubular structure. These novel connections that formed continuously in the cell wall or were wrapped by the cell membranes of neighboring cells appeared frequently in the large-scale 3D model, suggesting additional strategies for viral trafficking that were difficult to distinguish using conventional EM.


Assuntos
Tospovirus , Vírus , Tospovirus/ultraestrutura , Plantas , Retículo Endoplasmático/metabolismo , Microscopia Eletrônica
10.
Proc Natl Acad Sci U S A ; 117(2): 1181-1190, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879355

RESUMO

Negative-stranded/ambisense RNA viruses (NSVs) include not only dangerous pathogens of medical importance but also serious plant pathogens of agronomic importance. Tomato spotted wilt virus (TSWV) is one of the most important plant NSVs, infecting more than 1,000 plant species, and poses major threats to global food security. The segmented negative-stranded/ambisense RNA genomes of TSWV, however, have been a major obstacle to molecular genetic manipulation. In this study, we report the complete recovery of infectious TSWV entirely from complementary DNA (cDNA) clones. First, a replication- and transcription-competent minigenome replication system was established based on 35S-driven constructs of the S(-)-genomic (g) or S(+)-antigenomic (ag) RNA template, flanked by the 5' hammerhead and 3' ribozyme sequence of hepatitis delta virus, a nucleocapsid (N) protein gene and codon-optimized viral RNA-dependent RNA polymerase (RdRp) gene. Next, a movement-competent minigenome replication system was developed based on M(-)-gRNA, which was able to complement cell-to-cell and systemic movement of reconstituted ribonucleoprotein complexes (RNPs) of S RNA replicon. Finally, infectious TSWV and derivatives carrying eGFP reporters were rescued in planta via simultaneous expression of full-length cDNA constructs coding for S(+)-agRNA, M(-)-gRNA, and L(+)-agRNA in which the glycoprotein gene sequence of M(-)-gRNA was optimized. Viral rescue occurred with the addition of various RNAi suppressors including P19, HcPro, and γb, but TSWV NSs interfered with the rescue of genomic RNA. This reverse genetics system for TSWV now allows detailed molecular genetic analysis of all aspects of viral infection cycle and pathogenicity.


Assuntos
DNA Complementar/genética , Tospovirus/genética , Tospovirus/fisiologia , Tospovirus/patogenicidade , RNA Polimerases Dirigidas por DNA/genética , Vírus Delta da Hepatite/genética , Proteínas do Nucleocapsídeo/genética , Doenças das Plantas/virologia , RNA Catalítico/genética , RNA Viral/genética , Replicon , Nicotiana/virologia , Proteínas Virais/genética , Vírion/genética , Vírion/metabolismo , Replicação Viral
11.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895127

RESUMO

Plant viruses are the main pathogens which cause significant quality and yield losses in tomato crops. The important viruses that infect tomatoes worldwide belong to five genera: Begomovirus, Orthotospovirus, Tobamovirus, Potyvirus, and Crinivirus. Tomato resistance genes against viruses, including Ty gene resistance against begomoviruses, Sw gene resistance against orthotospoviruses, Tm gene resistance against tobamoviruses, and Pot 1 gene resistance against potyviruses, have been identified from wild germplasm and introduced into cultivated cultivars via hybrid breeding. However, these resistance genes mainly exhibit qualitative resistance mediated by single genes, which cannot protect against virus mutations, recombination, mixed-infection, or emerging viruses, thus posing a great challenge to tomato antiviral breeding. Based on the epidemic characteristics of tomato viruses, we propose that future studies on tomato virus resistance breeding should focus on rapidly, safely, and efficiently creating broad-spectrum germplasm materials resistant to multiple viruses. Accordingly, we summarized and analyzed the advantages and characteristics of the three tomato antiviral breeding strategies, including marker-assisted selection (MAS)-based hybrid breeding, RNA interference (RNAi)-based transgenic breeding, and CRISPR/Cas-based gene editing. Finally, we highlighted the challenges and provided suggestions for improving tomato antiviral breeding in the future using the three breeding strategies.


Assuntos
Vírus de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Resistência à Doença/genética , Melhoramento Vegetal , Antivirais , Doenças das Plantas/genética
12.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958590

RESUMO

In order to reduce the use of fungicide and ensure food safety, it is necessary to develop fungicide with low toxicity and high efficiency to reduce residues. Azoxystrobin (AZOX), which is derived from mushrooms, is an excellent choice. However, conventional AZOX release is difficult to regulate. In this paper, a pH-responsive fungicide delivery system for the preparation of AZOX by impregnation method was reported. The Zinc metal-organic framework/Biomass charcoal (ZIF-8/BC) support was first prepared, and subsequently, the AZOX-ZIF-8/BC nano fungicide was prepared by adsorption of AZOX onto ZIF-8/BC by dipping. Gray mold, caused by Botrytis cinerea, is one of the most important crop diseases worldwide. AZOX-ZIF-8/BC could respond to oxalic acid produced by Botrytis cinerea to release loaded AZOX. When pH = 4.8, it was 48.42% faster than when pH = 8.2. The loading of AZOX on ZIF-8/BC was 19.83%. In vitro and pot experiments showed that AZOX-ZIF-8/BC had significant fungicidal activity, and 300 mg/L concentration of AZOX-ZIF-8-BC could be considered as a safe and effective control of Botrytis cinerea. The above results indicated that the prepared AZOX-ZIF-8/BC not only exhibited good drug efficacy but also demonstrated pH-responsive fungicide release.


Assuntos
Fungicidas Industriais , Estruturas Metalorgânicas , Solanum lycopersicum , Fungicidas Industriais/farmacologia , Carvão Vegetal/farmacologia , Estruturas Metalorgânicas/farmacologia , Zinco/farmacologia , Biomassa , Doenças das Plantas/prevenção & controle , Botrytis
13.
Plant Dis ; 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36018555

RESUMO

Paris polyphylla var. yunnanensis is a perennial herb in the family Trilliacea. The plants have immense medicinal and economic importance (Chen et al., 2021). Large-scale artificial planting has led to the emergence of various viral diseases in Paris polyphylla var. yunnanensis, including paris virus 1 (ParV1), paris mosaic necrosis virus (PMNV), paris polyphylla virus X, and pepper mild mottle virus (PMMoV) (Chen et al., 2021; Chen et al., 2022). However, tobacco mosaic virus (TMV) had not been reported as a pathogen on this host. In September 2021, symptoms of leaf shrinking, withering and mottling, and the plants demonstrating dwarfing first observed on Paris polyphylla var. yunnanensis in Qujing Province, Yunnan, China (Suppl Figure 1A). Leaves with these characteristic symptoms were collected from 20 plants. Virus particles in the samples were observed by transmission electron microscopy (TEM) using negative staining (Zhang et al., 2016). These samples revealed the presence of rod-shaped virions, which were approximately 300 nm long with a diameter of approximately 18nm (Suppl Figure 1B). Based on particle morphology these were identified as a putative Tobamovirus. To further identify the exact virus, total RNA was obtained using an RNA-easy Isolation Reagent (TaKaRaBiotech, Dalian, China), cDNA synthesis was performed and RT-PCR assays allowed to amplify a fragment of the CP gene of TMV using specific primers (Suppl table 1). A 480 bp fragment (Suppl Figure 1C) was obtained and cloned into the pMD-18T vector (TaKaRa Biotech, Dalian, China) and sequenced. BLASTn- analysis revealed that the 20 amplicons were identical and shared coat sequence (100%) identity with the TMV isolates Mile-1 (acc. no. MK584554.1) and the diseased P. polyphylla was infected with TMV. The sequence was deposited in the GenBank database with the accession number OM366238 (CP). The sap from infected plants was used as inoculum for transmission of TMV to 10 healthy Nicotiana glutinosa and N. tabacum K326, respectively. 15 days post-inoculation, obvious symptoms of necrosis and chlortisis for viral infection were observed on inoculated and systemic leaves. The systemic leaves of 20 from two species plants were collected, and tested positive for TMV by RT-PCR with the specific primers (Suppl table 1). The sequences of the movement protein (MP) gene (807 bp, OM3662406) and RNA-dependent RNA polymerase (RdRp) gene (3351 bp, OM366242) of TMV were obtained by RT-PCR assays using MP-and RdRp-specific primers (Suppl Table 1). A disease incidence survey was conducted by our team in three Paris polyphylla var. yunnanensis fields in Qujing province and we observed a symptom incidence of 60% across all three fields. To confirm that the symptoms corresponded to TMV infection, leaf samples from 20 plants were collected from per field and all plants tested positive for TMV using RT-PCR assays. To the best of our knowledge, this is the first report of TMV infection in P. polyphylla var. yunnanensis in China. This report, in combination with another recent report of new viruses (Paris mitovirus 1, Paris virus 2) that infects the plants (Chen et al., 2022), points toward a need to intensively monitor the viruses in fields to protect the P. polyphylla var. yunnanensis industry.

14.
Plant Dis ; 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36190300

RESUMO

Anisomeles indica (L.) Kuntze is a perennial erect herb that belongs to the genus Epimeredi, family Labiatae (Hsieh et al., 2008). This herb is distributed in several southern provinces such as Yunnan, Sichuan and Guizhou in China, and it is also exported to Southeast Asian countries such as Singapore and Malaysia (Li., 2010; Yao et al., 2019). Due to its market potential and broad development prospects, the herb has been cultivated in Yunnan. In August 2021, virus-like symptoms on leaves, including shrinking, mosaic, and yellow mottling(Fig S1. A) appeared on approximately 80% of A. indica in the experimental fields of the Kunming Institute of Botany, Chinese Academy of Science, in Kunming, Yunnan. To unveil the possible viral agents associated with the disease symptoms, leaf samples were collected from 5 plants for transmission electron microscopy (TEM) analysis using negative staining (Zhang et al., 2016). Rhabditiform-shaped particles around 300 × 18 nm (Fig S1. C) were observed, which resemble those of tobamoviruses. To identify the exact virus, total RNA was extracted from the 20 leaf samples using the RNA-easy Isolation Reagent (Vazyme, Nanjing, China), followed by reverse transcription (RT)-PCR with a degenerate tobamovirus primer pair (Li et al., 2014). A 480-bp amplicon was obtained from each sample and cloned into the pMD18-T vector for Sanger sequencing (Takara, Dalian, China). BLASTn-analysis revealed that the 20 amplicons were identical and shared 100% nucleotide sequence identity with tobacco mosaic virus (TMV) isolate Bei Cang Zhu from Atractylodes lancea (acc. no. KU198186) One sequence was deposited in the GenBank under the accession number OK489807. ELISA testing with TMV-specific antibody (Agdia, USA) produced positive results for all of the 20 leaf samples. In order to understand the difference between TMV isolates from A. indica and those form other host plants, the sequences of movement protein (MP, 807 bp) and RNA-dependent RNA polymerase (RdRp, 3351 bp) of TMV were also obtained from one of the TMV infected samples using the target gene special primers (Tab. S1), and submitted to GenBank under the accession number OM3662406 (MP) and OM366242 (RdRp). BLASTn-analysis revealed that the amplicon of MP shared 97.75% nucleotide sequence identity with TMV isolate Henan 9-2-2017 from sweet potato (MN186255.1) and RdRp shared 97.43% nucleotide sequence identity with TMV isolate SXFQ from Solanum lycopersicum (JX993906.1). Phylogenetic analysis indicated that the isolate of A. indica grouped with several TMV isolates (e.g., tomato, AF103779.1 and tobacco, HE818449.1) from Northern China. The virus was successfully transmitted onto healthy A.indica plants (n = 5) upon mechanical inoculation as the plants not only developed foliar distortion symptoms but also tested positive for TMV by RT-PCR with the CP-specific primers (Tab. S1). Taken together, our results demonstrated that the diseased A. indica plants were infected with TMV. To our knowledge, this is the first report of TMV infected A. indica (L.) Kuntze in China. Symptomatic phenotype-based field surveys on some plantations in Yunnan Province indicated that the disease incidence ranged from 70% to 90%, resulting in significant loss of production of A. indica. It is necessary to monitor the viruses in the fields and find effective methods to protect TMV in the A. indica (L.) Kuntze industry.

15.
Plant Dis ; 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410858

RESUMO

Sanqi (Panax notoginseng (Burk.) F. H. Chen) is a traditional Chinese medicinal plant with a long planting cycle of 2-3 years that makes it vulnerable to root diseases caused by several pathogens, including Fusarium solani, Alternaria panax, Phytophthoracactorum, and Pseudomonas sp. In April 2019, root soft rot samples of Sanqi were collected from a plantation site in Songming, southwest of China. Typical symptoms included root softening and necrosis, yellow leaf, and stem wilting. Ten diseased roots samples were collected and sterilized with 0.1% HgCl2 for 1 min, 75% ethanol for 2min, and then rinsed thrice with sterile water. Sterilized roots were cut into small pieces of 5 × 5 mm and cultured on the nutrient agar (NA) medium for 48 h at 28°C. From the root cultures, a total of thirteen bacterial strains were obtained. Three strains, SM 2-5, SM 2-13, and SM 2-14 were selected for further study. These three strains were gram-negative, short rod-shaped (1~2×0.5~1µm), non-spore-forming and had polar tufted flagella as observed under a transmission electron microscope (TEM). Also, the strains were positive for oxidase, beta-galactosidase, arginine dihydrolase, and lysine decarboxylase while negative for amylase and urease tested by biochemical methods (Wang 2017). To further determine the pathogenic species, genomic DNA of these three strains was extracted using a Genomic DNA Kit (Tsing Ke, Beijing, China), to PCR amplify 16S rDNA using universal primers 27F/1492R (Wang et al. 2017). Also, S. maltophilia 23S rDNA specific primers SM1/SM4 (Whitby et al. 2000) were used for PCR amplification to confirm the species. 16S rDNA sequence analysis showed that SM 2-5 (GenBank Accession No. MW555227), SM 2-13 (GenBank Accession No. MW555228), and SM 2-14 (GenBank Accession No. MW555229) shared the highest identity (>99.9%) with the S. maltophilia strains (GenBank Accession No. MT323142, MH669295, MN826555). Furthermore, 23S rDNA sequence analysis of SM 2-5 (GenBank Accession No. MZ707732), SM 2-13 (GenBank Accession No. MZ645941) and SM 2-14 (GenBank Accession No. MZ707733) revealed their high identity (>99.8%) with the S. maltophilia species. 16S and 23S rDNA phylogenetic analysis (Mega6.06) using the neighbor-joining (NJ) method with 1,000 bootstrap replicates revealed the three strains clustering with the other S. maltophilia strains. Therefore, based on morphology, metabolic profile, and sequence analysis, the three strains were identified as Stenotrophomonas maltophilia. To test pathogenicity, the strains were grown in the nutrient broth (NB) medium for 48h at 28°C until bacterial suspension reached to OD600≈1.0 (2.0×109CFU/mL). Then, healthy roots of one-year-old Sanqi plants, pre-washed with sterilized water and -poked with a sterilized needle, were soaked in bacterial suspension (2.0×109CFU/mL) of the three strains separately for inoculation 10min. Sterilized water treatment was used as a control. Subsequently, bacteria-inoculated plants were planted in sterile soil pots and cultured in a greenhouse at 28°C with shading rate of 70%. Each treatment group included 3 plants with 3 replicates. Ten days post inoculation, symptoms similar to the ones in natural conditions were observed in the bacteria-inoculated plants. Based on the disease index (Li et al. 2020), we found that among the three strains, SM 2-13 displayed the highest virulence, while no symptoms were observed in the control plants. The same bacterial strains were re-isolated from these inoculated roots and identified by the methods described above. Previous studies showed that some Stenotrophomonas species cause plant diseases such as rice white stripe (Singh et al. 2001), strawberry leaf black spot (Wang et al. 2017), Cyclobalanopsis patelliformis leaf spot (Bian et al. 2020), and Jatropha curcas L. seed borne and stem necrosis (Wang et al. 2018). To our knowledge, this is the first report confirming Stenotrophomonas maltophilia causing root soft rot of Panax notoginseng in China.

16.
Plant Dis ; 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926200

RESUMO

Chilli pepper is an important economic crop and virus diseases are constraints on its production. In 2018, disease surveys were conducted at a 15-ha chilli pepper plantation in Dehong, southwest of Yunnan Province, China. Throughout the chilli pepper growing season from March to September, pepper plants developed three different virus-like symptoms on leaves, including mosaic, yellow mottle and shrinkage (Fig. S1). Based on observation of virus-like symptomatic phenotypes, the field surveys indicated that the disease incidence ranged from 30% in March to a peak 100% in July, resulting in a significant loss of pepper fruit from 30 to 100% depending on plot of the field. Potyvirus-like filamentous particles, around 11*760 nm, were observed under electron microscopy in the sap of symptomatic leaves (Fig. S1). To further determine the viral species in these samples, total RNA was extracted from three symptomatic samples using a Trans ZolUp Plus RNA Kit (Trans Gene, Beijing, China). Complementary DNA (cDNA) was synthesized using oligo (dT) and M-MLV reverse transcriptase (Promega, Madison, Wisconsin, USA) according to the manufacturer's instructions, and the polymerase chain reaction (PCR) was performed using degenerate primers specific to genus Potyvirus targeting HC-Pro region (HPFor: 5-TGYGAYAAYCARYTIGAYIIIAAYG-3; HPRev: 5-GAICCRWAIGARTCIAIIACRTG-3) (Ha et al. 2008) under the following conditions: an initial denaturation at 94°C for 4min, 30 cycles of denaturation at 94°C for 30 s, annealing at 56°C for 30 s, extension at 72°C for 30s, and a 10min final extension at 72°C. An expected 683-bp DNA fragment was amplified and cloned into the pMD 18-T Vector (Takara, Japan) for sequencing. Sequence analysis using BLAST revealed that the amplicons of phenotype I (Fig. S1a) shared highest nucleotide identity (85.6%) with wild tomato mosaic virus (WTMV) isolate from Vietnam (GenBank no. DQ851495) while the amplicons of phenotype III (Fig. S1c) showed the highest nucleotide identity (93%) with chilli veinal mottle virus (ChiVMV) isolate from Sichuan, China. (GenBank no. MK405594). Amplicons of phenotype II included both sequence of above WTMV and ChiVMV, indicating co-infection of phenotype II (Fig. S1b). Phenotype I sample was used for mechanical inoculation on chilli pepper as described previously (Yang et al.2013). After ten days, virus-like symptoms similar to phenotype I were observed on leaves, and WTMV infection, but not ChiVMV infection, was confirmed by RT-PCR tests on inoculated pepper plants (Fig. S1 e, f). To further ascertain the incidence of these two viruses in the field, primers WT-F: 5'-GTTGTTGAATGTGGTTTAGTT-3' and WT-R: 5'-AGATGTGCTTTGGAAGCGACC-3' were designed based on the WTMV sequence (GenBank no. DQ851495) to amplify a 476 bp product, and primers Ch-F/Ch-R (Ch-F: 5'-AAAGAAGAACAAGCGACAGAA-3', Ch-R: 5'-CATCACGCAAATATTCAAAGC-3') were designed based on ChiVMV sequence (GenBank no. MK405594.1) to amplify a 332 bp product. RT-PCR was conducted on 31 field-collected samples, and amplicons of expected sizes, 476bp and 332bp, corresponding to WTMV and ChiVMV, respectively, were obtained and sequenced to verify their identity. The results (Fig. S2) showed that 71% (22/31) of the samples tested positive for WTMV, 90% (28/31) tested positive for ChiVMV, and 65% (20/31) were co-infected with the two viruses. The WTMV was first reported infecting wild tomatoes in Vietnam in 2008 (Ha et al. 2008), and later reported in China in Nicotiana tabacum (Sun et al. 2015), Solanum nigrum (Zhang et al. 2019), and wild eggplant (Zhang et al. 2014). To our knowledge, this is the first report of WTMV infection on chilli pepper under natural conditions. Our study revealed that the chilli pepper disease in Dehong was caused by single or co-infection of WTMV and ChiVMV. It is necessary to find effective methods to control these two viruses.

17.
J Struct Biol ; 212(1): 107600, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32798655

RESUMO

Compared with conventional two-dimensional transmission electron microscopy (TEM), focused ion beam scanning electron microscopy (FIB-SEM) can provide more comprehensive 3D information on cell substructures at the nanometer scale. Biological samples prepared by cryofixation using high-pressure freezing demonstrate optimal preservation of the morphology of cellular structures, as these are arrested instantly in their near-native states. However, samples from cryofixation often show a weak back-scatter electron signal and bad image contrast in FIB-SEM imaging. In addition, it is impossible to do large amounts of heavy metal staining. This is commonly achieved via established osmium impregnation (OTO) en bloc staining protocols. Here, we compared the FIB-SEM image quality of brain tissues prepared using several common freeze-substitution media, and we developed an approach that overcomes these limitations through a combination of osmium tetroxide, uranyl acetate, tannic acid, and potassium permanganate at proper concentrations, respectively. Using this optimized sample preparation protocol for high-pressure freezing and freeze-substitution, perfect smooth membrane morphology, even of the lipid bilayers of the cell membrane, was readily obtained using FIB-SEM. In addition, our protocol is broadly applicable and we demonstrated successful application to brain tissues, plant tissues, Caenorhabditis elegans, Candida albicans, and chlorella. This approach combines the potential of cryofixation for 3D large volume analysis of subcellular structures with the high-resolution capabilities of FIB-SEM.


Assuntos
Criopreservação/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Animais , Substituição ao Congelamento/métodos , Congelamento , Metais Pesados/química , Camundongos , Coloração e Rotulagem/métodos
18.
PLoS Pathog ; 14(7): e1007201, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30052679

RESUMO

Insect transmission is obligatory for persistently transmitted viruses because the vector insect is the only means of virus spread in nature. The insect midgut is the first major barrier limiting virus acquisition, but the mechanisms by which viruses are able to cross the cell membrane and then infect the midgut epithelial cells of the insect have not been elucidated completely. Here, we found that the outer capsid or nucleocapsid protein (NP) of three viruses can interact and colocalize with sugar transporter 6 that is highly expressed in the midgut of Laodelphax striatellus (LsST6). In contrast, LsST6 did not interact with the NP of rice grassy stunt virus, which cannot be transmitted by the same planthopper. LsST6 not only altered the cellular location of viral proteins and then colocalized with them in the cell membrane, but also mediated the entry of rice stripe virus (RSV) particles into Spodoptera frugiperda 9 (Sf9) cells that expressed the heterologous gene LsST6. We further showed that RSV particles initially bound to the cell membrane of midgut epithelial cells where it colocalized with LsST6, and then invaded the cytoplasm. When LsST6 expression was knocked down, viral titre, acquisition percentage and transmission efficiency of the treated insect decreased significantly, but virus replication was not affected. This work thus uncovered a strategy by which LsST6 mediates viral entry into midgut epithelial cells and leads to successful transmission by the insect vector.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Proteínas de Insetos/metabolismo , Insetos Vetores/metabolismo , Mucosa Intestinal/virologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Viroses/transmissão , Animais , Insetos Vetores/virologia , Mucosa Intestinal/metabolismo , Tenuivirus/metabolismo , Tenuivirus/patogenicidade , Viroses/metabolismo
19.
Appl Opt ; 59(6): 1648-1653, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32225669

RESUMO

We report on the design, fabrication, and characterization of single longitudinal mode InAs/GaAs quantum dot lasers emitting at the 1.3 µm communication band. The influence of simply etched surface high-order gratings in the ridge of the Fabry-Perot lasers has been studied. A 35th-order surface grating is fabricated by standard photolithography to introduce the refractive index perturbation, which leads to the reduced mirror loss at the desired wavelength and thus realizing single longitudinal mode lasing. Stable single-mode operations are maintained at the injection current range of 45-100 mA with a side-mode suppression ratio up to 33 dB.

20.
Pestic Biochem Physiol ; 169: 104654, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828372

RESUMO

Tomato spotted wilt orthotospovirus (TSWV) causes devastating losses to agronomic and ornamental crops worldwide. Currently, there is no effective strategy to control this disease. Use of biotic inducers to enhance plant resistance to viruses maybe an effective approach. Our previous study indicated that Tagitinin A (Tag A) has a high curative and protective effect against TSWV. However, the underlying molecular mechanism of Tag A-mediated antiviral activity remains unknown. In this study, Tag A reduced the expression of the NSs, NSm genes was very low in untreated leaves following TSWV infection. In addition, the expression of all TSWV genes in the inoculated and systemic leaves was inhibited in the protective assay, and with an inhibition rate of more than 85% in systemic leaves. Tag A increased phenylalanine ammonia-lyase (PAL) activity in the curative and protective assays. The concentrations of jasmonic acid (JA) and jasmonic acid -isoleucine (JA-Ile) and the expression of its key gene NtCOI1 in Tag A-treated and systemic leaves of treated plants were significantly higher than those of the control plant. Furthermore, Tag A-induced resistance to TSWV could be eliminated by VIGS-mediated silencing of the NtCOI1 gene. These indicated that Tag A acts against TSWV by activating the JA defense signaling pathway.


Assuntos
Solanum lycopersicum , Tospovirus , Doenças das Plantas , Sesquiterpenos , Tithonia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA