Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 19279, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588550

RESUMO

The fatigue strength of a component is known to highly depend on its surface quality, and it is thus necessary to develop a reliable and appropriate mathematical model for fatigue strength assessment that consider the effect of surface roughness. In this paper, different underlying physical mechanisms of the roughness effect at different regions of specimens were studied by fatigue testing of 7N01 aluminum alloy. For a quantitative analysis of the surface roughness effect, a revised stress field intensity approach for a fatigue strength assessment of microsized notches was proposed as a theoretical support. In the new model, a new form of weight function was built to adapt the characteristics of microsized notches. In addition, the effect of the field radius was fundamentally weakened on solution of the stress field intensity and the difficulty of fatigue failure region definition in the traditional method was overcome correspondingly in the proposed model, which made the calculated field strength accurate and objective. Finally, to demonstrate the validity of the revised approach quantitatively, specimens with conventionally sized notches were subjected to stress field intensity calculations. The results showed that the revised approach has satisfactory accuracy compared with the other two traditional approaches from the perspective of quantitative analysis.

2.
Comput Biol Med ; 133: 104413, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33915363

RESUMO

Fatigue-induced human error is a leading cause of accidents. The purpose of this exploratory study in China was to perform field tests to measure fatigue psychophysiological parameters, such as electrocardiography (ECG), electromyography (EMG), pulse, blood pressure, reaction time and vital capacity (VC), in miners in high-altitude and cold areas and to perform multi-feature information fusion and fatigue identification. Forty-five miners were randomly selected as subjects for a field test, and feature signals were extracted from 90 psychophysiological features as basic signals for fatigue analysis. Fatigue sensitivity indices were obtained by Pearson correlation analysis, t-test and receiver operating characteristic (ROC) curve performance evaluation. The ECG time-domain, ECG frequency-domain, EMG, VC, systolic blood pressure (SBP), and pulse were significantly different after miner fatigue. The support vector machine (SVM) and random forest (RF) techniques were used to classify and identify fatigue by information fusion and factor combination. The optimal fatigue classification factors were ECG-FD (CV Accuracy = 85.0%) and EMG (CV Accuracy = 90.0%). The optimal combination of factors was ECG-TD + ECG-FD + EMG (CV accuracy = 80.0%). Furthermore, SVM machine learning had a good recognition effect. This study shows that SVM and RF can effectively identify miner fatigue based on fatigue-related factor combinations. ECG-FD and EMG are the best indicators of fatigue, and the best performance and robustness are obtained with three-factor combination classification. This study on miner fatigue identification provides a reference for research on clinical medicine and the identification of human fatigue under high-altitude, cold and low-oxygen conditions.


Assuntos
Altitude , Eletrocardiografia , China , Eletromiografia , Humanos , Máquina de Vetores de Suporte
3.
Materials (Basel) ; 13(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397506

RESUMO

The reliability of aero engine has a direct impact on the flight safety of the whole plane. With the continuous improvement of performance requirements of aero engines, the related fatigue and reliability problems also appear. For the fatigue failure characteristics of the typical component (compressor disk) in an aero engine, the fatigue reliability of its multi-site damage structure in service is analyzed by using probability cumulative damage criterion in this paper. The probability distribution definitions of life, damage and damage threshold are discussed and the relationship among them is also introduced by the new proposed criterion. Meanwhile, a method to determine the probability distribution of cumulative damage threshold and probability life prediction is carried out, based on which a hierarchical index system of statistical analysis and reliability modeling principle on the system level is further constructed for compressor disk. At the end of the paper, a certain cruise of fighter plane is analyzed to verify the validity of the new model. Emphasizing the difference between the compressor disk and traditional component, the new reliability analysis model developed in this study is basically reasonable for most of the load histories for the compressor disk, other than the traditional one, especially for the changeable and complex cruise missions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA