RESUMO
PURPOSE OF REVIEW: To highlight the current global experience with DCD heart transplantation and explore the evolution of, and compare preservation strategies; examine early clinical outcomes, and discuss the growing use of DCD donors as a new frontier in heart transplantation. RECENT FINDINGS: The two strategies of DCD heart preservation include NMP using the OCS Heart and TA-NRP followed by either: NMP or CSS. Better understanding the limits of cold ischaemia following TA-NRP will aid in distant procurement. Asystolic warm ischaemia plays an important role in determining immediate post-operative graft function and potential need for mechanical support. Large volume DCD heart transplant units show no difference in survival between DCD and DBD donor heart transplants. In a previously non-utilised source of donor hearts, often viewed as an "unknown frontier" in heart transplantation, DCD hearts are a suitable alternative to brain-dead donor hearts and are likely to remain a permanent part of the heart transplantation landscape. Global uptake is currently increasing, and as understanding of preservation strategies and tolerable ischaemic times improve, utilisation of DCD hearts will continue to grow.
Assuntos
Transplante de Coração , Humanos , Doadores de Tecidos , Coração , PerfusãoRESUMO
Heart transplantation from donation after circulatory death (DCD) donors has the potential to substantially increase overall heart transplant activity. The aim of this report is to review the first 8 y of our clinical heart transplant program at St Vincent's Hospital Sydney, to describe how our program has evolved and to report the impact that changes to our retrieval protocols have had on posttransplant outcomes. Since 2014, we have performed 74 DCD heart transplants from DCD donors utilizing a direct procurement protocol followed by normothermic machine perfusion. Changes to our retrieval protocol have resulted in a higher retrieval rate from DCD donors and fewer rejections of DCD hearts during normothermic machine perfusion. Compared with our previously reported early experience in the first 23 transplants, we have observed a significant reduction in the incidence of severe primary graft dysfunction from 35% (8/23) to 8% (4/51) in the subsequent 51 transplant recipients ( P < 0.01). The only withdrawal time interval significantly associated with severe primary graft dysfunction was the asystolic warm ischemic time: 15 (12-17) versus 13 (11-14) min ( P < 0.05). One- and 5-y survival of DCD heart transplant recipients was 94% and 88%, comparable to that of a contemporary cohort of donation after brain death recipients: 87 and 81% ( P -value was not significant). In conclusion, heart transplantation from DCD donors has become a major contributor to our overall transplant activity accounting for almost 30% of all transplants performed by our program in the last 2 y, with similar DCD and donation after brain death outcomes.
Assuntos
Transplante de Coração , Disfunção Primária do Enxerto , Obtenção de Tecidos e Órgãos , Humanos , Morte Encefálica , Doadores de Tecidos , Transplante de Coração/efeitos adversos , Transplante de Coração/métodos , Sobrevivência de Enxerto , Estudos Retrospectivos , MorteRESUMO
Anthropomorphic breast phantoms mimic patient anatomy in order to evaluate clinical mammography and digital breast tomosynthesis system performance. Our goal is to create a modular phantom with an anthropomorphic region to allow for improved lesion and calcification detection as well as a uniform region to evaluate standard quality control (QC) metrics. Previous versions of this phantom used commercial photopolymer inkjet three-dimensional printers to recreate breast anatomy using four surfaces that were fabricated with commercial materials spanning only a limited breast density range of 36% to 64%. We use modified printers to create voxelized, dithered breast phantoms with continuous gradations between glandular and adipose tissues. Moreover, the new phantom replicates the low-end density (representing adipose tissue) using third party material, Jf Flexible, and increases the high-end density to the density of glandular tissue and beyond by either doping Jf Flexible with salts and nanoparticles or using a new commercial resin, VeroPureWhite. An insert design is utilized to add masses, calcifications, and iodinated objects into the phantom for increased utility. The uniform chest wall region provides a space for traditional QC objects such as line pair patterns for measuring resolution and scale bars for measuring printer linearity. Incorporating these distinct design modules enables us to create an improved, complete breast phantom to better evaluate clinical mammography systems for lesion and calcification detection and standard QC performance evaluation.