Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 942: 173585, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38810735

RESUMO

Marine ecosystem has been experiencing multiple stressors caused by anthropogenic activities, including ocean acidification (OA) and nickel (Ni) pollution. Here, we examined the individual/combined effects of OA (pCO2 1000 µatm) and Ni (6 µg/L) exposure on a marine copepod Tigriopus japonicus for six generations (F1-F6), followed by one-generation recovery (F7) in clean seawater. Ni accumulation and several important phenotypic traits were measured in each generation. To explore within-generation response and transgenerational plasticity, we analyzed the transcriptome profile for the copepods of F6 and F7. The results showed that Ni exposure compromised the development, reproduction and survival of copepods during F1-F6, but its toxicity effects were alleviated by OA. Thus, under OA and Ni combined exposure, due to their antagonistic interaction, the disruption of Ca2+ homeostasis, and the inhibition of calcium signaling pathway and oxytocin signaling pathway were not found. However, as a cost of acclimatization/adaption potential to long-term OA and Ni combined exposure, there was a loss of transcriptome plasticity during recovery, which limited the resilience of copepods to previously begin environments. Overall, our work fosters a comprehensive understanding of within- and transgenerational effects of climatic stressor and metal pollution on marine biota.


Assuntos
Copépodes , Níquel , Água do Mar , Transcriptoma , Poluentes Químicos da Água , Animais , Copépodes/efeitos dos fármacos , Copépodes/fisiologia , Níquel/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Água do Mar/química , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos
2.
J Colloid Interface Sci ; 615: 876-886, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35182857

RESUMO

The functionalization of metal-organic frameworks (MOFs) is imperative and challenging for the development of practical MOF-based materials. Herein, a magnetically functionalized Zr-MOF (Fe3O4@MOF-525) was synthesized via secondary-growth approach to obtain an easily-separated and recyclable adsorbent for the removal of pharmaceuticals (tetracycline (TC) and diclofenac sodium (DF)). After loading Fe3O4 nanoparticles (NPs), due to the increase of micropore volume and specific surface area caused by defects, the adsorption performance of Fe3O4@MOF-525 was improved. The kinetics could be described by the pseudo-second-order kinetic model. The different adsorption capacity and initial rate were attributed to the properties of the pharmaceuticals, including the molecular size and hydrophobicity/hydrophilicity. In isotherm experiments, the maximum adsorption capacities of DF and TC on Fe3O4@MOF-525 calculated by Sips model reached 745 and 277 mg·g-1, respectively. The thermodynamic studies indicated the adsorption was endothermic and spontaneous. The effect of pH suggested that electrostatic interaction, π-π interaction, anion-π interaction, and H-bonding were possibly involved in the adsorption process. The adsorbent was separated by magnetic and regenerated. Washed with ethanol, Fe3O4@MOF-525 remained about 80% adsorption capacity after four cycles. In-situ photo-regeneration under visible-light irradiation was another attractive method, where > 95% TC was degraded in 4 h. The reaction with scavengers revealed that 1O2 was the dominant reactive species in our system, indicating the occurrence of Type II photosensitization. The separability, excellent adsorption performance, and recyclability of Fe3O4@MOF-525 may lead to its beneficial applications in water treatment.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cinética , Estruturas Metalorgânicas/química , Preparações Farmacêuticas , Regeneração , Poluentes Químicos da Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA